Programme Outcomes, Programme Specific Outcomes and Course Outcomes

For

PG Programmes

Program Name: PG. in Mathematics

Number of Semesters: 4

Department of Mathematics University of North Bengal

West Bengal, INDIA

Program Outcomes

- To develop and conduct continuing education programs for Mathematics graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of Mathematics.
- Enable students to enhance mathematical skills and understand the fundamental concepts of pure and applied mathematics.
- To inculcate the curiosity for mathematics in students and to prepare them for future research.
- Develop, design and implement research projects competently and independently.
- Identify and define emerging problems related to one's area of interest.

Program Specific Outcomes

- Apply the knowledge of mathematical concepts in interdisciplinary fields.
- Upon completion of the program, students will be able to demonstrate critical understanding at an advanced level with up-to-date knowledge in research methodology of his/her field of interests.
- Students will be completely prepared to take up PhD and continue his/her research.
- Qualify Competitive Exams like NET/GATE/SET/GRE etc.

	Course Code	Course Name	Marks	Credits
	C-I1T	Groups and Rings	50	2
	C-I2T	Naïve Set Theory and Elements of Topology	50	2
SEM: I	C-I3T	Analysis of Several Variables	50	2
	C-I4T	Complex Analysis-I	50	2
	C-I5T	Real Analysis	50	2
	C-I6T	Ordinary Differential Equations	50	2
	C-II1T	Linear Algebra	50	2
	C-II2T	Point-Set Topology	50	2
	C-II3T	Differential Geometry	50	2
SEM: II	C-II4T	Functional Analysis	50	2
	C-II5T	Abstract Measure Space	50	2
	C-II6T	Partial Differential Equations	50	2
	E-IIIT1	Measurability and Integration in Abstract Spaces	50	2
	E-IIIT2	Elementary Number Theory	50	2
	E-IIIT3	Complex Analysis –II	50	2
	E-IIIT4	Field Extension and Galois Theory	50	2
SEM: III	E-IIIT5	Topological Groups	50	2
	E-IIIT6	Algebraic Topology	50	2
	E-IIIT7	Integral Equation and Integral transform	50	2
	E-IIIT8	Differential Topology	50	2
	E-IIIT9	Theory of Approximation	50	2
	E-IIIT10	p-adic Analysis	50	2
	E-IVT1	Signed Measure and Product Measure	50	2
	E-IVT2	Graph Theory	50	2
	E-IVT3	Topological Algebra	50	2
	E-IVT4	General theory of Integration	50	2
	E-IVT5	Modules and Number Theory	50	2
SEM: IV	E-IVT6	Advanced complex Analysis	50	2
	E-IVT7	Discrete Mathematics	50	2
	E-IVT8	Algebraic Geometry	50	2
	E-IVT9	Category Theory	50	2
	S-IV6P	Numerical problem solving by computer Programming (PRACTICAL)	50	2

SEMESTER—I			
Course Code	Course Name	Course Outcomes	
C-I1T	Groups and Rings	 Knowledge gained: Concept of group action. Class equation and its applications. Sylow's Theorems and their applications. Ideal of a ring, Polynomial rings. EDs, PIDs, & UFDs and relations among them. Skills gained: Solving problems using the powerful concept of group action. Finding the number of subgroups, normal subgroups of a finite group. Ability to understand a large class of commutative rings by regarding them as quotients of polynomial rings by suitable ideals. 	
		 Competency developed: Applying the concept of a group action to real life problems such as Counting. Facility in handling problems involving polynomial equations. Facility in working with situations involving commutative rings. Ability to understand the various PID's whose common example is the ring of integers Z. 	
C-I2T	Naïve Set Theory and Elements of Topology	 Knowledge gained: Set as a domain of thought in Mathematical Sciences Conversion of Necked Set into Mathematical structure Cardinality of Sets (that can distinguish even infinite sets having huge difference in some sense) and Ordinal Numbers A fast journey from Metric space to Topological Space How roots of analysis are spread within Topological spaces Equality in Topological sense and its relevance Properties of Topological Spaces (Separation Axioms, Compactness, Connectedness) Inadequacy of sequence and its recovery by Nets and Filters. Skills gained: Analysis on Abstract Spaces to some extent Analysis without concepts of length or distance Competency gained: Ability of real/complete understanding of analysis and feelings of identity in differences 	
C-I3T	Analysis of Several Variables	 Knowledge gained: Differentiability of maps from R^m to Rⁿ and the derivative as a linear operator. Jacobian matrix. Chain rule. Notions of partial derivatives. Inverse and implicit function theorems. Existence of the Riemann integral for sufficiently well-behaved functions on rectangles, i.e., product of intervals. Fubini's theorem. Partitions of unity. Change of variables and the Jacobian formula. Picard's Theorem, Green's theorem, Gauss (Divergence) theorem and Stoke's theorem. 	

		Skills gained
		Generalization of concept of differentiability.
		 Generalization of concept of integrability.
		• Generalization of theorems.
		Competency gained:
		• Ability to solve higher dimensional derivatives.
		Ability to solve higher dimensional integration.
		• Apply inverse and implicit function theorems.
		Knowledge gained:
		• Complex plane as a metric space. Analytic functions. Power series as
		analytic function, Cauchy-Riemann differential equations.
		• Cauchy's theorem, Cauchy's integral formula and applications, Morera's
		theorem, Liouville's theorem, Zeros of analytic function and related
		properties.
		• Maximum modulus theorem and its applications, Singularities.
	Complex	Skills gained:
C-I4T	Analysis-I	• Differentiation of functions on C, deciding if a function on C is analytic.
		• Development of analytic functions into power series.
		• Range of a bounded entire function.
		Competency developed:
		• Understanding of topological and geometric properties of the complex
		 Differentiation and integration of functions on C
		 Location of maximum and minimum points of an analytic function
		Knowledge gained:
		• Concept of extended real numbers, Lebesgue and Borel measures on
		real line.
		• Measurability of real sets.
		• Measurability of extended real valued functions.
		• Foundation of extension to abstract spaces.
		Skill gained
C-I5T	Real Analysis	• Solving problems relating to determinations of measures of finite,
	·	infinite sets.
		• Ability of constructing different Borel sets.
		• Ability of constructing measurable, non-measurable sets and functions.
		Connected and developed
		• Applying results to the later topics, namely in abstract spaces
		 Applying tesuits to the later topics, handly in abstract spaces. Applying the notions for the study of subtle concepts like Cantor sets.
		reprinting the notions for the study of subtle concepts like cultor sets.
		Knowledge gained:
		• Solution methods for first and second order equations.
		Power series solutions.
		• Properties of Bessel functions and Legendre polynomials.
		• Existence and uniqueness of initial value problems.
		 ricaru s anu reano s theorems, Gronwall s inequality. Maximal interval of existence, continuous dependence.
		 Higher order linear equations and linear systems fundamental solutions
	Ordinary	Wronskian, matrix exponential equations.
C-I6T	Differential	• Boundary value problems for second order equations, Green functions,
	Equations	eigen value problems.
		Skill gained:
		 Solution method for higher order equations. Power series solutions
		 rower series solutions. Reducing linear system of equations into matrix differential equation
		form.
		Computing Wronskian and fundamental solutions.
		Constructing Green functions.

		Solving eigenvalue problems.
		Competency developed:
		• Solving higher order equations, qualitative analysis of special functions.
		• Understanding of linear system of equations, Green functions, eigenvalue problems.
		SEMESTER—II
Course Code	Course Name	Course Outcomes
	Linear	 Knowledge gained: Matrix theory, determinants and their application to systems of linear Equations Eigenvalues, diagonalization of matrices and reduction of systems of linear equations into simpler systems of easily tractable nature. Vector theory: subspace, basis, linear independence, inner product spaces etc. Applications of matrix algebra. Skills gained: Matrix manipulations.
C-II1T	Algebra	 Handing of systems of linear equations. Use mathematical software to solve problems on linear systems. Ability to go abstract from concrete: from concrete notion of solution spaces to vector spaces. Linear modelling problems.
		 Competency developed: Solving Systems of linear equations. Qualitative analysis of systems of linear equations. Vector Spaces, linear independence and foundations of abstract algebraic thinking.
C-II2T	Point-Set Topology	 Knowledge gained: Observation of differences between metric space and Topological Space via different kinds of compactness of Topological spaces. Role of ordinals to distinguish different compactness of Topological spaces. Paracompactness of Topological Spaces towards searching stronger to simpler condition for metrizability of Topological Spaces. Local compactness and compactification to embed possible Topological spaces into well behaved compact Hausdorff spaces. Covering spaces and Uniform spaces (which placed in between metric space and topological space according to their properties/ behavior).
		 Skills gained: Analysis in abstract spaces. Simplifications of proofs or understanding by using compactification. Competency gained: Ability to learn/understand any topic/cubiect related to topology.
		Adding to rearrivulderstand any topic/subject related to topology.
C-II3T	Differential Geometry	 Knowledge gained: Curves, surfaces, surface patches. Parameterizations of curves and surfaces, Different surfaces like smooth surfaces, regular surface, orientable surfaces etc. Differential maps between regular surfaces. The first and second fundamental forms. Gauss map Normal curvatures, principle curvatures, Gaussian and mean curvatures.
		• Study different curves and surfaces and its natures.

		 Verify smooth surfaces, regular surface, orientable surfaces etc. Construct differential maps between smooth surfaces Evaluate 1st and 2nd fundamental forms of surface patches
		 Evaluate 1 and 2 Fundamental forms of surface patenes. Competency developed: Realizing the behaviors of different surfaces. Analyze different curves and surfaces. Characterize different surfaces.
C-II4T	Functional Analysis	 Knowledge gained: Definition of normed linear spaces, Banach spaces and examples. Quotient space of normed linear spaces. Equivalent norms. Riesz's Lemma. Basic properties of finite dimensional normed linear spaces. Concept of bounded linear operators between these spaces. Concept of the spectrum of a bounded linear operator. Concept of the dual space of a normed linear space. Uniform boundedness theorem and some of its consequences. Open mapping and closed graph theorems. Hahn-Banach theorem for real linear spaces, complex linear spaces and normed linear spaces. Reflexive spaces. Definition of inner product spaces, Hilbert Spaces and examples. Orthonormal sets. Bessel's inequality. Complete orthonormal sets and Parseval's identity. Riesz representation theorem. Adjoint of an operator on a Hilbert space. Reflexivity of Hilbert spaces. Concept of compact, Positive, projection, self-adjoint, normal and unitary operators. Skills gained: Equivalent norms on a vector spaces define the same topology. On a finite dimensional vector space any two norms are equivalent. Using topology to work with infinite dimensional vector spaces. Viewing C[a,b] with sup norm and integration norm respectively as Banach space and incomplete norm linear space. Comparing the differences between finite and infinite dimensional spaces. Comparing the differences between basis and Schauder basis. Working with a complete orthogonal set in a Hilbert space. Fredholm and other integral operator as a linear operator. Investigating the best approximation of a given vector by vectors in a given subspace.
C-II5T	Abstract Measure Space	 Knowledge gained: Concepts of measure spaces and measurable spaces. Borel σ-algebra. Cantor ternary set. Completion of measure spaces. Skills gained: Ability of defining measurability from arbitrary outer measure. Ability of understanding central importance of Cantor Lebesgue functions.
		Competency developed: • Realizing concept of measure for abstract sets.

		Ability to obtain completion of measure spaces.
C-II6T	Partial Differential Equations	 Knowledge gained: Cauchy problem for 1st order hyperbolic equations, method of characteristics. Classification of 2nd order partial differential equations, normal forms and characteristics. Lagrange-Green's identity, uniqueness by energy methods. Mean value property, weak and strong maximum principle, Green's function, poisson's formula, Dirichlet's principle. Initial value problem for heat equation, fundamental solution, weak and strong maximum principle and uniqueness results. Uniqueness of wave equations, D'alembert's principle, Duhamel's principle. Skill gained: Solving 1st and 2nd order partial differential equations. Uniqueness of heat and wave equations. Methods of separation of variables for Laplace, heat and wave equations. Competency gained: Reduction into canonical form and solving partial differential equations. Solution of heat, wave and Laplace equations

SEMESTER—III

Course Code	Course Name	Course Outcomes
E-IIIT1	Measurability and Integration in Abstract Spaces	 Knowledge gained: Concepts of simple functions Integration of functions on arbitrary measure space Regular only measure and metric outer measure Skills gained: Generalization of classical Lebesgue integral on real sets Integration of bounded functions on sets of finite measure Competency developed: Ability of applying the concepts of integration for the study in subsequent chapters namely, signed and product measure.
E-IIIT2	Elementary Number Theory	 Knowledge gained: Division algorithm and Euclidean algorithm. Congruence Chinese Remainder Theorem. Diophantine equations. Quadratic reciprocity Law. Distribution of primes. Arithmetical functions. Skills gained: Use of congruence as a tool to reduce a hard labour of work in some calculations. Solving a Diophantine equation and system of Diophantine equations. Finding primitive roots. Establishing existing identities using Mobius inversion formula. Competency developed: Useful tools in various areas of number theory, viz. analytic and algebraic number theory, cryptography, modular forms etc.
E-IIIT3	Complex Analysis –II	Knowledge gained:Cauchy's residue theorem, and applications.

		Argument Principle, Rouche's theorem.
		Bilinear transformation, Principle of symmetry, Conformal mapping.Analytic continuation and different methods of analytic continuation.
		Skills gained:
		 Classifying singularities. Integration of functions on C, applications to counting zeros and poles.
		• Evaluation of definite real integrals.
		Constructing Mobius transformation between regions.
		Competency developed:
		• Viewing analytic function as conformal mapping.
		Extending the domain of an analytic function.Applications to problems from real analysis.
		Knowledge gained:Concept of algebraic element, transcendental elements, minimal
		polynomials etc.
		 Various field extensions, e.g. splitting fields, algebraically closed fields, perfect fields, normal fields, separable fields, cyclotomic fields etc. Concept of Galois groups and Galois extensions.
		Skills gained
	Field Extension	 Construction of minimal polynomials, splitting fields, finite fields etc.
E-IIIT4	and Galois Theory	 Verify/identify normal fields, separable fields. Construction of algobraic numbers geometrically using straightedge and
	Galois Theory	 Construction of argeorate numbers geometricarry using straightedge and compass only.
		• Formulation of Galois groups and Galois field extensions.
		Competency developed:
		• Relate Structures of fields with certain related groups.
		 Abel's famous theorem on the insolvability of the general quintic polynomials.
		Knowledge gained:
		application
	Topological	Skills gained
E IIIT5		 Use of topological properties to know algebraic properties
L-III13	Groups	Topological properties via algebraic properties.
		Competency gained:
		 Applications of Point-Set Topology towards extension of the study of Algebra
		1 ngoora.
		Knowledge gained:
		 Construction of Green's function. Concept of various Integral Equations: Fredholm and Voltera type.
		 Calculus of Variations, Euler-Lagrange's equations.
		Convolutions and applications.
		 Distributions and their transforms. Various integral transforms: Applications to Wave. Heat and Laplace.
E-IIIT7		Equations.
	Integral Equation	Skills gained
	and Integral transform	• Obtain solution of a boundary value problem using integral
	<u> </u>	equations.
		Obtain minimum surface of revolution from a variational
		• Solution of Wave Heat and I aplace equations using integral transform
		technique.
		Competency developed:
		• Solutions of the Abel's Integral Equations.

		 Handle separable and symmetric kernels of an integral equation. Solution of Isoperimetric and Brachistochrone problems using variation method. Applying convolution theorem on the transformed function in order to get the primitive.
E-IIIT9	Theory of Approximation	 Knowledge gained: Definition Concept of best approximation in a normed linear space. Convexity-uniform convexity, strict convexity and their relations. Weierstrass theorem, Korovin theorem. Bernstein polynomials. Bernstein's inequality. Jacson's theorems. Haar uniqueness theorem. Simultaneous approximation. L^p-approximation. Skills gained: Hilbert space is strictly convex and the space C[a,b] with supnorm is not a strictly convex. Extremal point. Chebyshev polynomials. Lipschitz class. Approximation by means of Fourier Series. Competency developed: Apply uniform convexity and strict convexity notions. Apply Weierstrass and Korovin theorems. Apply Jacson's theorem and Haar uniqueness theorem.

SEMESTER—IV

Course Code	Course Name	Course Outcomes
E-IVT1	Signed Measure and Product Measure	 Knowledge gained: Concepts of signed measure on a σ-algebra. Decomposition of signed measure space and signed measure. Absolute continuity and mutual singularity. Product measure spaces. Skill gained: Hahn Decomposition, Jordan decomposition, and Lebesgue decomposition. Solving problems on absolute continuity and mutual singularity. Calculate product measure by integrals.
		 Realizing importance of Radon-Nykodim theorem. Fubini's theorem and Tonell'is theorem and their application.
E-IVT2	Graph Theory	 Knowledge gained: Definition of Graph, subgraph their representations, degree and algebraic operations. Connected graphs, weighted graphs and shortest paths Trees: Characterizations, spanning tree, minimum spanning trees Eulerian and Hamiltonian graphs: Characterization, Necessary and sufficient conditions Special classes of graphs: Bipartite graphs, line graphs, chordal graphs. Vertex and edge coloring Directed surplus Out degree in degree competinity existence.

		 Skills gained: Develop algorithm for shortest path between two vertices Construct matching problem using bipartite graph and hence define a problem related to perfect matching. Applying Fleury's algorithm to construct Eulerian graph. Applying Kruskal's algorithm to construct minimum spanning tree. Construct suitable techniques to color a graph Competency gained: Classify Class-1 graphs and class-2 graphs in the light of edge coloring. Construct perfect matching between two given sets of boys and girls with different cardinality. Using the concept of connectivity of directed graph, construct electrical circuits. In Google Maps, various locations are represented as vertices or nodes and the roads are represented as edges and graph theory is used to find the shortest path between two nodes.
E-IVT4	General theory of Integration	 Knowledge gained: Concepts of Tagged Gauge Partition. Intrinsic power of tagged partition. Henstock-Kurzweil Integral. Important properties including Saks-Henstock Lemma and Vitali covering Theorem. Skills gained: Understanding the use of Tagged partition and its applications in continuity. Using Right-Left procedure appropriately. Understanding basic properties. Competency developed: Viewing Heustock integral as the highest possible generalized integral on ℝ. Realising that HK-integration corrects the defects of Classical Riemann Theory and both simplifies and extends Lebesgue Theory.
E-IVT5	Modules and Number Theory	 Knowledge gained: Modules as vector spaces over rings. Special classes of modules: free modules, simple modules, cyclic modules etc. Theory of modules over PID and its application to Jordan and Rational canonical forms. Number fields, quadratic and cyclotomic fields. Characters of a finite abelian group, Dirichlet Characters. Equivalent forms of Prime Number Theorem. Skills gained: Ability to deal with modules which is indispensable in wide ranges of mathematical disciplines such as algebra, topology, number theory, operator theory etc. Ability to handle modern algebraic notions like quotients, generators and relations etc. Ability to deal with different problems in Number theory such as problems related to primes in an Arithmetic Progression, L-functions etc. Competency developed: Basic preparation for research in various areas of pure mathematics like algebraic geometry, Algebraic Number Theory, Analytic Number Theory etc. Understanding of Prime Number Theorem.

E-IVT6	Advanced Complex Analysis	 Knowledge gained: Mean value property, Poisson's integral formula, Dirichlet's problem for a disc. Infinite product and its convergence. Factorization theorems, Picard theorems. Poisson-Jensen formula, Nevanlinna's 1st fundamental theorem. Skills gained: Relation between harmonic function and analytic function. Generalization of fundamental theorem of algebra. Range of an entire function. Competency developed: Characterizing harmonic functions. Representing entire functions as infinite product. Constructing maximum modulus like function for meromorphic functions.
E-IVT7	Discrete Mathematics	 Knowledge gained: Basic combinatorics, induction, inclusion exclusion, pigeon-hole principle. More advance topics in combinatorics: recurrence relations, generating functions. Application to real life problems such as network theory, data structure, optimization etc. Basic logical concepts, analyzing arguments, quantification theory. Construction of method of deduction for validity of truth. Skills gained: Efficiency in handling with discrete structures. Efficiency in solving concrete combinatorial problems whose presence is ubiquitous in science and engineering. Proving validity and invalidity of arguments. Efficiency in handling with universal and existential quantifiers. Competency developed: Ability to use graphs as unifying theme for various combinatorial problems. Ability to apply combinatorial intuitions in network theory, data structure and various other fields of science. Understanding of symbolic logic.
E-IVT9	Category Theory	 Knowledge gained: Concept of category, Morphisms. Functor, forgetful functor, faithful functor. Product category. Natural transformation. Representable functor, embedding. Yoneda's lemma and its applications. Adjoint functor. Initial object, terminal object. Limit, colimit, pull back diagram, and push out diagram. Skills gained: Construction of different functors. Ability to study different categories. Calculating natural transformations, limit, colimits etc. Competency developed: Study the high-level abstractions such as sets, rings, and groups. Philosophical investigations of concepts such as space, system and even truth. Study of logical systems.
S-IV6P	Numerical problem solving by computer	 Knowledge gained: Basic ideas about computer programming language. Fundamental data types, operators and expressions, conditional branching used in C. C-functions (declaring and calling a function), arrays (one dimensional

Programming (PRACTICAL)	 and multidimensional), pointers (Accessing array elements through pointers). Opening and closing a file, reading from a file and writing to a file. Solving numerical problems using C-programming.
	 Skills gained: Efficiency in handling with data types, C-operators, expression in C, conditional branching, looping. Construct C-functions, use of Standard C library functions Efficiency in handling with arrays, pointers, C-file. Efficiency in solving numerical problems such as interpolation, differentiation, integration, matrix problem, ODE, PDE etc. using C-programming.
	 Competency developed: Ability to understand syntax in C (data types, arrays, pointers, C-files, C-functions, etc.) Ability to solve various numerical problems occurring in applied mathematics, theoretical physics, and biological science.