Biotechnology
M.Sc. in Biotechnology
303
er I 🗸 Semester II Semester III Semester IV
Biochemistry
BIOT-CT- 101 (For new course keep it blank; else enter the old course code)
4
tical/Practical: 75 Continuing Evaluation: 25
rrect alternatives):
V
ecific Elective
employability / entrepreneurship? YES \sqrt{O}
n imparting life skill? YES NO V
Activity ? YES NO V
syllabus (applicable in case of change in syllabus only)
%)
% and up to 50%) √
inges
en completely changed and several new topics have been introduced. ns in unit 6 have been shifted to the Paper BIOT-CT 102.

Semester One

Course Code: BIOT-CT- 101

Course Name: Biochemistry

Credits: 4

Course Objectives:

The goal of this course is to build on postgraduate-level knowledge of biochemical principles, with a focus on various metabolic pathways. Within the context of each topic, the course will make students aware of numerous disease pathologies.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Gain fundamental knowledge in biochemistry;
- Understand the molecular basis of various pathological conditions from the perspective of biochemical reactions.

Unit I Chemical basis of life	Chemical basis of life: Miller-Urey experiment, abiotic formation of amino acid oligomers, composition of living matter; Water – properties of water, essential role of water for life on earth pH, buffer, maintenance of blood pH and pH of gastric juice, pH optima of different enzymes (pepsin, trypsin and alkaline phosphatase), ionization and hydrophobicity, emergent properties of biomolecules in water, biomolecular hierarchy, macromolecules, molecular assemblies.
Unit II Protein structure	Structure-function relationships: amino acids – structure and functional group properties, peptides and covalent structure of proteins, elucidation of primary and higher order structures, Ramachandran plot, evolution of protein structure, protein degradation and introduction to molecular pathways controlling protein degradation, structure-function relationships in model proteins like ribonuclease A, myoglobin, hemoglobin, chymotrypsin etc.; basic principles of protein folding: Anfinsen's Dogma, Levinthal paradox, cooperativity in protein folding, free energy landscape of protein folding and pathways of protein folding, molten globule state, chaperons, diseases associated with protein folding, introduction to molecular dynamic simulation.
Unit III Enzyme kinetics	Enzyme catalysis – general principles of catalysis; quantitation of enzyme activity and efficiency; enzyme characterization and Michaelis-Menten kinetics; relevance of enzymes in metabolic regulation, activation, inhibition and covalent modification; single substrate enzymes; concept of catalytic antibodies; catalytic strategies with specific examples of proteases, carbonic anhydrases, allosteric enzymes; regulatory strategies with specific example of hemoglobin; isozymes; role of covalent modification in enzymatic activity; zymogens.

Unit IV Glycobiology Unit V Structure and	Sugars - mono, di, and polysaccharides with specific reference to glycogen, amylose and cellulose, glycosylation of other biomolecules - glycoproteins and glycolipids; lipids - structure and properties of important members of storage and membrane lipids; lipoproteins. Self-assembly of lipids, micelle, biomembrane organization - sidedness and function; membrane bound proteins - structure, properties and function;
functions of DNA & RNA and lipids	transport phenomena; nucleosides, nucleotides, nucleic acids - structure, a historical perspective leading up to the proposition of DNA double helical structure; difference in RNA and DNA structure and their importance in evolution of DNA as the genetic material.
Unit VI Bioenergetics	Bioenergetics-basic principles; equilibria and concept of free energy; coupled interconnecting reactions in metabolism; oxidation of carbon fuels; recurring motifs in metabolism; allosteric enzymes; glycolysis and gluconeogenesis; reciprocal regulations and non-carbohydrate sources of glucose; phosphorylation; F1-F0 ATP Synthase; shuttles across mitochondria; Citric acid cycle, entry to citric acid cycle, citric acid cycle as a source of biosynthetic precursors; Oxidative phosphorylation; F1-F0 ATP Synthase; shuttles across mitochondria; regulation of oxidative phosphorylation; Photosynthesis- chloroplast and two photosystems; proton gradient across thylakoid membrane; Calvin cycle and pentose phosphate pathway; glycogen metabolism, reciprocal control of glycogen synthesis and breackdown, roles of epinephrine and glucagon and insulin in glycogen metabolism; nucleotide biosynthesis; biosynthesis of membrane lipids and sterols with specific emphasis on cholesterol metabolism and mevalonate pathway; elucidation of metabolic pathways; logic and integration of central metabolism; entry/ exit of various biomolecules from central pathways; principles of metabolic regulation; steps for regulation; target of rapamycin (TOR) & Autophagy regulation in relation to C & N metabolism, starvation responses and insulin signaling.
Unit VII	Chromatographic methods for separation of macromolecules, reverse
Chromatographic techniques	phase, hydrophobic, affinity chromatography, HPLC, criteria of protein purity; Electrophoretic techniques: Theory and application of PAGE and SDS PAGE., 2D electrophoresis, pulse field gel electrophoresis

- 1. Stryer, L. (2015). Biochemistry. (8th ed.) New York: Freeman.
- 2. Lehninger, A. L. (2012). Principles of Biochemistry (6th ed.). New York, NY: Worth.
- 3. Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons.
- 4. Dobson, C. M. (2003). Protein Folding and Misfolding. Nature, 426(6968), 884-890. doi:10.1038/nature02261.
- 5. Richards, F. M. (1991). The Protein Folding Problem. Scientific American, 264(1), 54-63. doi:10.1038/scientificamerican0191-54.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I 🗸 semester II Semester IV	
Course Name:	Cell and Molecular Biology	
Course Code:	BIOT-CT- 102 (For new course keep it blank; else enter the old course code)	
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	prrect alternatives):	
Core	V	
Department Spe	ecific Elective	
Generic Elective	2	
Is the course focused or	n employability / entrepreneurship? YES VO	
Is the course focused or	n imparting life skill? YES NO 🗸	
Is the course based on Activity ? YES NO V		
Percentage of change in syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	%)	
Moderate (>15% and up to 50%) $$		
Major (> 50%)		
Summary of cha	anges	
Unit II- 'Telon	nerase and its role in termination' incorporated.	
Unit III- 'Protein sorting' incorporated		
Unit IV- Intro	duction to GPCR, Inositol/DAG/PKC and Ca2+ signaling' incorporated.	

Course Code: BIOT-CT- 102

Course Name: Cell and Molecular Biology

Credits: 4

Course Objectives:

The goal of this course is to make students aware that as we progress down the scale of magnitude from cells to organelles to molecules, our comprehension of numerous biological processes gets more comprehensive.

Student Learning Outcomes:

Student should be equipped to understand three fundamental aspects in biological phenomenon: a) what to seek; b) how to seek; c) why to seek?

Unit I Dynamic organization of cell	Universal features of cells; cell chemistry and biosynthesis: chemical organization of cells; internal organization of the cell - cell membranes: structure of cell membranes and concepts related to compartmentalization in eukaryotic cells; intracellular organelles: endoplasmic reticulum and Golgi apparatus, lysosomes and peroxisomes, ribosomes, cellular cytoskeleton, mitochondria, chloroplasts and cell energetics; nuclear compartment: nucleus, nucleolus and chromosomes.
Unit II Chromatin structure and dynamics	Organization of Prokaryotic and Eukaryotic Genome; DNA-replication: structure and assembly of eukaryotic and prokaryotic DNA polymerase, Initiation, elongation and termination of replication in prokaryotes, Telomerase and its role in termination; Transcription: Structure and assembly of eukaryotic and prokaryotic RNA Polymerases; trancriptional initiation, elongation and termination; RNA processing; transcriptional control: promoters and enhancers, transcription factors as activators and repressors; transcription and post-transcriptional control; breakdown of selective and specific mRNAs through interference by small non-coding RNAs (miRNAs and siRNAs),mRNA flow through nuclear envelope into cytoplasm; protein translation machinery; ribosomes-composition and assembly; universal genetic codes, degeneracy of codons, Wobble hypothesis; Iso-accepting tRNA; mechanism of initiation, elongation and termination; co- and post- translational modifications, mitochondrial genetic code translation product cleavage, modification and activation.
Unit III Cellular signalling, transport and trafficking	Molecular mechanisms of membrane transport, nuclear transport, transport across mitochondria and chloroplasts; intracellular vesicular trafficking from endoplasmic reticulum through Golgi apparatus to lysosomes/cell exterior; protein sorting
Unit IV Cellular processes	Cell cycle and its regulation; cell division: mitosis, meiosis and cytokinesis; cell differentiation: stem cells, their differentiation into different cell types and organization into specialized tissues; cell-ECM and cell-cell interactions; cell motility and migration; cell death: different modes of cell death and their

	regulation.Introduction to GPCR, Inositol/DAG//PKC and Ca++ signaling pathways;
Unit V Manipulating and studying cells	Isolation of cells and basics of cell culture; observing cells under a microscope, different types of microscopy; analyzing and manipulating DNA, RNA and proteins.
Unit VI Genome instability and cell transformation	Mutations, proto-oncogenes, oncogenes and tumour suppressor genes, physical, chemical and biological mutagens; types of mutations; intra-genic and intergenic suppression; transpositions- transposable genetic elements in prokaryotes and eukaryotes, role of transposons in genome; viral and cellular oncogenes; tumor suppressor genes; structure, function and mechanism of action; activation and suppression of tumor suppressor genes; oncogenes as transcriptional activators.

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008).
- 2. Molecular Biology of the Cell (5th Ed.). New York: Garland Science.
- 3. Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.
- 4. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014). Lewin's Genes XI. Burlington, MA: Jones & Bartlett Learning.
- 5. Cooper, G. M., & Hausman, R. E. (2013). The Cell: a Molecular Approach (6th Ed.). Washington: ASM ; Sunderland.
- 6. Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W. M. (2012). Becker's World of the Cell. Boston (8th Ed.). Benjamin Cummings.
- 7. Watson, J. D. (2008). Molecular Biology of the Gene (5th ed.). Menlo Park, CA: Benjamin/Cummings.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I 🗸 semester II Semester IV	
Course Name:	Microbiology and Genetics	
Course Code:	BIOT-CT- 103 (For new course keep it blank; else enter the old course code)	
Course Credit:	4	
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	prrect alternatives):	
Core	\checkmark	
Department Sp	ecific Elective	
Generic Elective		
Is the course focused or	n employability / entrepreneurship? YES VIO	
Is the course focused on imparting life skill? YES NO V		
Is the course based on Activity ? YES NO $$		
Percentage of change in syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	%)	
Moderate (>15% and up to 50%) $$		
Major (> 50%)		
Summary of cha	anges	
rationality of of Genetics p	e paper is created with merging of Microbiology with genetics. The this merger lay on the solid foundation of bacterial genetics. Curriculum rogressed from bacterial and viral genetics to yeast genetics to Drosophila ant genetics. On the whole, credit increased from 3 to 4.	

Course Code: BIOT-CT- 103

Course Name: Microbiology and Genetics

Credits: 4

Course Objectives:

The goals of this course are to introduce students to the field of microbiology, with a focus on microbial diversity, morphology, physiology, and nutrition; methods for controlling microbes and host-microbe interactions; and basic genetics and classical genetics, including prokaryotic/phage genetics, yeast, and higher eukaryotic domains. Students will be exposed to concepts of population genetics, quantitative genetics embracing complex characteristics, clinical genetics, and genetics of evolution in addition to all classical Mendelian genetics principles.

Student Learning Outcomes:

Students should be able to:

- Identify major categories of microorganisms and analyze their classification, diversity, and ubiquity;
- Identify and demonstrate structural, physiological, genetic similarities and differences of major categories of microorganisms;
- Identify and demonstrate how to control microbial growth;
- Demonstrate and evaluate interactions between microbes, hosts and environment.
- Describe fundamental molecular principles of genetics;
- Understand relationship between phenotype and genotype in human genetic traits;
- Describe the basics of genetic mapping;
- Understand how gene expression is regulated.

Course	Sylla	bus:
--------	-------	------

Unit I Microbial characteristics	Introduction to microbiology and microbes, history & scope of microbiology, morphology, structure, growth and nutrition of bacteria, bacterial growth curve, bacterial culture methods; bacterial genetics: mutation and recombination in bacteria, plasmids, transformation, transduction and conjugation; antimicrobial resistance.
Unit II Microbial diversity	Microbial taxonomy and evolution of diversity, classification of microorganisms, criteria for classification; classification of bacteria; Cyanobacteria, acetic acid bacteria, Pseudomonads, lactic and propionic acid bacteria, endospore forming bacteria, Mycobacteria and Mycoplasma. Archaea: Halophiles, Methanogens, Hyperthermophilic archae, Thermoplasm; eukarya: algae, fungi, slime molds and protozoa; extremophiles and unculturable microbes.
Unit III Control of microorganisms	Sterilization, disinfection and antisepsis: physical and chemical methods for control of microorganisms, antibiotics, antiviral and antifungal drugs, biological control of microorganisms.
Unit IV	Virus and bacteriophages, general properties of viruses, viral structure,

Virology	taxonomy of virus, viral replication, cultivation and identification of viruses; sub-viral particles – viroids and prions.
Unit V Host-microbes interaction	Host-pathogen interaction, ecological impact of microbes; symbiosis (Nitrogen fixation and ruminant symbiosis); microbes and nutrient cycles; microbial communication system; bacterial quorum sensing; microbial fuel cells; prebiotics and probiotics.
Unit VI Genetics of bacteria and bacteriophages	Concept of a gene in pre-DNA era; mapping of genes in bacterial and phage chromosomes by classical genetic crosses; fine structure analysis of a gene; genetic complementation and other genetic crosses using phenotypic markers; phenotype to genotype connectivity prior to DNA-based understanding of gene.
Unit VII Yeast genetics	Meiotic crosses, tetrad analyses, non-Mendelian and Mendelian ratios, gene conversion, models of genetic recombination, yeast mating type switch; dominant and recessive genes/mutations, suppressor or modifier screens, complementation groups, transposon mutagenesis, synthetic lethality, genetic epistasis.
Unit VIII Drosophila genetics as a model of higher eukaryotes	Monohybrid & dihybrid crosses, back-crosses, test-crosses, analyses of autosomal and sex linkages, screening of mutations based on phenotypes and mapping the same, hypomorphy, genetic mosaics, genetic epistasis in context of developmental mechanism.
Unit IX Plant genetics	Laws of segregation in plant crosses, inbreeding, selfing, heterosis, maintenance of genetic purity, gene pyramiding.

- 1. Pelczar, M. J., Reid, R. D., & Chan, E. C. (2001). Microbiology (5th ed.). New York: McGraw-Hill.
- 2. Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L. M., & Willey, J. M. (2011).
- 3. Prescott's Microbiology. New York: McGraw-Hill.
- 4. Matthai, W., Berg, C. Y., & Black, J. G. (2005). Microbiology, Principles and Explorations. Boston, MA: John Wiley & Sons.
- 5. Hartl, D. L., & Jones, E. W. (1998). Genetics: Principles and Analysis. Sudbury, MA: Jones and Bartlett.
- 6. Pierce, B. A. (2005). Genetics: a Conceptual Approach. New York: W.H. Freeman.
- 7. Tamarin, R. H., & Leavitt, R. W. (1991). Principles of Genetics. Dubuque, IA: Wm. C. Brown.
- 8. Smith, J. M. (1998). Evolutionary Genetics. Oxford: Oxford University Press.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I 🗸 emester II Semester III Semester IV		
Course Name:	Laboratory I: Biochemistry & Analytical Techniques		
Course Code:	BIOT-CP- 104 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core	V		
Department Sp	ecific Elective		
Generic Elective			
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused on imparting life skill? YES NO V			
Is the course based on A	Is the course based on Activity ? YES VO		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	%)		
Moderate (>15	% and up to 50%) √		
Major (> 50%)			
Summary of cha	anges		
Mass spectro benefit	metry methods have been modified to improve practicality and student		
L			

Course Code: BIOT-CP- 104

Course Name: Laboratory I: Biochemistry & Analytical Techniques

Credits: 4

Course Objectives:

The goal of this laboratory course is to introduce students to biochemistry experiments. The principal objective of the course is to teach students how to use a set of experimental procedures in biochemistry to solve problems.

Student Learning Outcomes:

On completion of this course, students should be able to:

- To elaborate concepts of biochemistry with easy to run experiments;
- To familiarize with basic laboratory instruments and understand the principle of measurements using those instruments with experiments in biochemistry.

- 1. Preparing various stock solutions and working solutions that will be needed for the course.
- 2. To prepare an Acetic-Na Acetate Buffer and validate the Henderson-Hasselbach equation.
- 3. To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- 4. Titration of Amino Acids and separation of aliphatic, aromatic and polar amino acids by thin layer chromatography.
- 5. Purification and characterization of an enzyme from a recombinant source (such as Alkaline Phosphatase or Lactate Dehydrogenase or any enzyme of the institution's choice).
 - a) Preparation of cell-free lysates
 - b) Ammonium Sulfate precipitation
 - c) Ion-exchange Chromatography
 - d) Gel Filtration
 - e) Affinity Chromatography
 - f) Dialysis of the purified protein solution against 60% glycerol as a demonstration of storage method
 - g) Generating a Purification Table (protein concentration, amount of total protein; Computing specific activity of the enzyme preparation at each stage of purification)
 - h) Assessing purity of samples from each step of purification by SDS-PAGE Gel Electrophoresis
 - i) Enzyme Kinetic Parameters: Km, Vmax and Kcat.
- 6. Experimental verification that absorption at OD260 is more for denatured DNA as compared to native double stranded DNA. reversal of the same following DNA renaturation. Kinetics of DNA renaturation as a function of DNA size.
- 7. Identification of an unknown sample as DNA, RNA or protein using available laboratory tools. (Optional Experiments)

Department Name:	Biotechnology
Program Name:	M.Sc. in Biotechnology
Program Code:	303
Semester: Semest Course Name:	er I √ emester II Semester III Semester IV Laboratory II: Microbiology
Course Code:	BIOT-CP- 105 (For new course keep it blank; else enter the old course code)
Course Credit:	4
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25
Course Type (tick the co	prrect alternatives):
Core	V
Department Spe	ecific Elective
Generic Elective	
Is the course focused or	n employability / entrepreneurship? YES VO
Is the course focused or	n imparting life skill? YES NO V
Is the course based on A	Activity ? YES VO
Percentage of change ir	syllabus (applicable in case of change in syllabus only)
Minor (up to 15	%)
Moderate (>159	% and up to 50%) $$
Major (> 50%)	
Summary of cha	anges
syllabus arou	een major revision (>50%) in the syllabus. We have re-designed the and a few major concepts-proper use of aseptic techniques, bacterial nicroscopy, bacterial metabolism, and control of microbial growth.

Course Code: BIOT-CP- 105

Course Name: Laboratory II: Microbiology

Credits: 4

Course Objectives:

The objective of this laboratory course is to provide practical skills on basic microbiological techniques.

Student Learning Outcomes:

Students should be able to:

- Isolate, characterize and identify common bacterial organisms;
- Determine bacterial load of different samples;
- Perform antimicrobial sensitivity tests;
- Preserve bacterial cultures.

Course Syllabus:

- 1. Microbiology Laboratory: Basic rules and requirements.
- 2. Media preparation and plating techniques.
- 3. Preparation of different media for cultivation of bacteria: synthetic media, complex media, selective media.
- 4. Isolation of pure culture of bacteria by streaking method.
- 5. Estimation of CFU count by spread plate and pour plate method.
- 6. Study of colony and growth characteristics of some common bacteria: Bacillus, E. coli, Staphylococcus, Streptococcus, etc.
- 7. Biochemical tests for identification of bacteria.
- 8. Staining: Gram's staining, Capsule staining, Endospore staining
- 9. Antimicrobial sensitivity test (Kirby-Bauer Method) or Disc diffusion methods and demonstration of drug resistance.
- 10. Preservation of bacterial cultures by various techniques.
- 11. Isolation and identification of bacteria from soil/water samples.

- 1. Cappuccino, J. G., & Welsh, C. (2016). Microbiology: a Laboratory Manual. Benjamin-Cummings Publishing Company.
- 2. Collins, C. H., Lyne, P. M., Grange, J. M., & Falkinham III, J. (2004). Collins and Lyne's Microbiological Methods (8th ed.). Arnolds.
- 3. Tille, P. M., & Forbes, B. A. Bailey & Scott's Diagnostic Microbiology.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I V Semester II Semester IV	
Course Name:	Basics of Chemistry and Physics	
Course Code:	BIOT-DSE-106 (For new course keep it blank; else enter the old course code)	
Course Credit:	2	
Marks Allotted: Theore	tical/Practical: 42 Continuing Evaluation: 8	
Course Type (tick the co	prrect alternatives):	
Core		
Department Sp	ecific Elective V	
Generic Elective		
Is the course focused or	n employability / entrepreneurship? YES $\sqrt{0}$	
Is the course focused or	n imparting life skill? YES NO 🗸	
Is the course based on A	Activity ? YES NO 🗸	
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	%)	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of changes		
The course co	ode has been changed.	
·		

PG BOS Meeting Reference Number:

Course Code: BIOT-DSE- 106

Course Name: Basics of Chemistry and Physics

Credits: 2

Course Objectives:

The objectives of this course are to cover all essentials required to appreciate physico-chemical principles underlying biological processes.

Student Learning Outcomes:

Students should be able to have a firm foundation in fundamentals and application of current chemical and physical scientific theories.

	Physical quantities and their dynamics: definitions and dimensions: vectors
Unit I Basic physics for biologists	Physical quantities and their dynamics: definitions and dimensions; vectors & scalars, displacement, velocity, acceleration, kinematic formulas, angular momentum, torque, force, power, work, energy (kinetic & potential/electric charge separation, electromagnetic spectrum, photons etc.); springs & Hookes laws; elastic and inelastic collisions; Newton's law of motions (centripetal and centrifugal forces etc.); simple harmonic motions, mechanical waves, Doppler effect, wave interference, amplitude, period, frequency & wavelength; diffusion, dissipation, random walks, and directed motions in biological systems; low Reynolds number - world of Biology, buoyant forces, Bernoulli's equation, viscosity, turbulence, surface tension, adhesion; laws of thermodynamics: Maxwell Boltzmann distribution, conduction, convection and radiation, internal energy, entropy, temperature and free energy, Maxwell's demon (entropic forces at work in biology, chemical assemblies, self-assembled systems, role of ATP); Coulomb's law, conductors and insulators, electric potential energy of charges, nerve impulses, voltage gated channels, ionic conductance; Ohms law (basic electrical quantities: current, voltage & power), electrolyte conductivity, capacitors and capacitance, dielectrics; various machines in biology i.e. enzymes, allostery and molecular motors (molecules to cells and organisms).
Unit II Basic chemistry for biologists	Basic constituents of matter - elements, atoms, isotopes, atomic weights, atomic numbers, basics of mass spectrometry, molecules, Avogadro number, molarity, gas constant, molecular weights, structural and molecular formulae, ions and polyatomic ions; chemical reactions, reaction stoichiometry, rates of reaction, rate constants, order of reactions, Arrhenious equation, Maxwell Boltzmann distributions, rate- determining steps, catalysis, free-energy, entropy and enthalpy changes during reactions; kinetic versus thermodynamic controls of a reaction, reaction equilibrium (equilibrium constant); light and matter interactions (optical spectroscopy, fluorescence, bioluminescence, paramagnetism and diamagnetism, photoelectron spectroscopy; chemical bonds (ionic, covalent, Van der Walls forces); electronegativity, polarity; VSEPR theory and molecular geometry, dipole moment, orbital hybridizations; states of matter - vapor pressure, phase diagrams, surface tension, boiling and

m	elting points, solubility, capillary action, suspensions, colloids and
	lutions; acids, bases and pH - Arrhenious theory, pH, ionic product of
	ater, weak acids and bases, conjugate acid-base pairs, buffers and
	iffering action etc; chemical thermodynamics - internal energy, heat and
	mperature, enthalpy (bond enthalpy and reaction enthalpy), entropy,
	bbs free energy of ATP driven reactions, spontaneity versus driven
	actions in biology; redox reactions and electrochemistry - oxidation-
	duction reactions, standard cell potentials, Nernst equation, resting
	embrane potentials, bond rotations and molecular conformations -
Ne Ne	ewman projections, conformational analysis of alkanes, alkenes and
all	kynes; functional groups, optically asymmetric carbon centers

- 1. Baaquie, B. E. (2000). Laws of Physics: a Primer. Singapore: National University of Singapore.
- 2. Matthews, C. P., & Shearer, J. S. (1897). Problems and Questions in Physics. New York: Macmillan Company.
- 3. Halliday, D., Resnick, R., & Walker, J. (1993). Fundamentals of Physics.
- 4. New York: Wiley.
- 5. Ebbing, D. D., & Wrighton, M. S. (1990). General Chemistry. Boston: Houghton Mifflin.
- 6. Averill, B., & Eldredge, P. (2007). Chemistry: Principles, Patterns, and Applications. San Francisco: Benjamin Cummings.
- 7. Mahan, B. H. (1965). University Chemistry. Reading, MA: Addison-Wesley Pub.
- 8. Cantor, C. R., & Schimmel, P. R. (2004). Biophysical Chemistry. San Francisco:
- 9. W.H. Freeman.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I 🗸 jemester II Semester III Semester IV	
Course Name:	Basics of Mathematics and Statistics	
Course Code:	BIOT-DSE-107 (For new course keep it blank; else enter the old course code)	
Course Credit:	2	
Marks Allotted: Theore	tical/Practical: 42 Continuing Evaluation: 8	
Course Type (tick the co	prrect alternatives):	
Core		
Department Sp	ecific Elective V	
Generic Elective	2	
Is the course focused or	n employability / entrepreneurship? YES VO	
Is the course focused or	n imparting life skill? YES NO 🗸	
Is the course based on A	Activity ? YES NO 🗸	
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	5%)	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of changes		
The course co	ode has been changed.	

Course Code: BIOT-DSE- 107

Course Name: Basics of Mathematics and Statistics

Credits: 2

Course Objectives:

The objective of this course is to give conceptual exposure of essential contents of mathematics and statistics to students.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Gain broad understanding in mathematics and statistics;
- Recognize importance and value of mathematical and statistical thinking, training, and approach to problem solving, on a diverse variety of disciplines.

Course Syllabus:

Unit I	Linear equations, functions: slopes-intercepts, forms of two-variable linear
Algebra	equations; constructing linear models in biological systems; quadratic equations (solving, graphing, features of, interpreting quadratic models etc.),
	introduction to polynomials, graphs of binomials and polynomials; Symmetry
	of polynomial functions, basics of trigonometric functions, Pythagorean
	theory, graphing and constructing sinusoidal functions, imaginary numbers,
	complex numbers, adding-subtracting-multiplying complex numbers, basics
	of vectors, introduction to matrices.
Unit II	Differential calculus (limits, derivatives), integral calculus (integrals,
Calculus	sequences and series etc.).
Unit III	Population dynamics; oscillations, circadian rhythms, developmental
Mathematical	patterns, symmetry in biological systems, fractal geometries, size-limits &
models in biology	scaling in biology, modeling chemical reaction networks and metabolic networks.
Unit IV	Probability: counting, conditional probability, discrete and continuous
Statistics	random variables; Error propagation; Populations and samples, expectation,
	parametric tests of statistical significance, nonparametric hypothesis tests,
	linear regression, correlation & causality, analysis of variance, factorial
	experiment design.

- 1. Stroud, K. A., & Booth, D. J. (2009). Foundation Mathematics. New York, NY: Palgrave Macmillan.
- 2. Aitken, M., Broadhursts, B., & Haldky, S. (2009) Mathematics for Biological Scientists. Garland Science.
- 3. Billingsley, P. (1986). Probability and Measure. New York: Wiley.
- 4. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.
- 5. Daniel, W. W. (1987). Biostatistics, a Foundation for Analysis in the Health Sciences. New York: Wiley.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest Course Name:	er I Semester II V Semester III Semester IV	
course marile.	Genetic Engineering	
Course Code:	BIOT-CT- 201 (For new course keep it blank; else enter the old course code)	
Marks Allotted: Theore	4 vtical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co		
Core		
Department Sp		
Generic Elective		
	n employability / entrepreneurship? YES V O	
Is the course focused or		
Is the course based on A		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	5%) V	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of changes		
The very mine	or changes	

Semester Two

Course Code: BIOT-CT- 201

Course Name: Genetic Engineering

Credits: 4

Course Objectives:

The goals of this course are to provide students with an understanding of diverse approaches to genetic engineering and their applications in biological research and the biotechnology industry. The contents of this course reflect the fact that genetic engineering is a technique that was developed based on our fundamental understanding of molecular biology principles.

Student Learning Outcomes:

Given the importance of genetic engineering in modern culture, students should be well-versed in the theory of the technology. In addition to molecular biology and genetic engineering practicals, students should be able to conduct biological research and obtain employment in the appropriate biotech business.

Unit I Introduction and tools for genetic engineering	Impact of genetic engineering in modern society; general requirements for performing a genetic engineering experiment; restriction endonucleases and methylases; DNA ligase, Klenow enzyme, T4 DNA polymerase, polynucleotide kinase, alkaline phosphatase; cohesive and blunt end ligation; linkers; adaptors; homopolymeric tailing; labelling of DNA: nick translation, random priming, radioactive and non-radioactive probes, hybridization techniques: northern, southern, south-western and far-western and colony hybridization, fluorescence in situ hybridization.
Unit II Different types of vectors	Plasmids; Bacteriophages; M13 mp vectors; PUC19 and Bluescript vectors, hagemids; Lambda vectors; Insertion and Replacement vectors; Cosmids; Artificial chromosome vectors (YACs; BACs); Principles for maximizing gene expression expression vectors; pMal; GST; pET-based vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.; Intein-based vectors; Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and Pichia vectors system, plant based vectors, Ti and Ri as vectors, yeast vectors, shuttle vectors.
Unit III Different types of PCR techniques	Principles of PCR: primer design; fidelity of thermostable enzymes; DNA polymerases; types of PCR – multiplex, nested; reverse-transcription PCR, real time PCR, touchdown PCR, hot start PCR, colony PCR, asymmetric PCR, cloning of PCR products; T-vectors; proof reading enzymes; PCR based site specific mutagenesis; PCR in molecular diagnostics; viral and bacterial detection; sequencing methods; enzymatic DNA sequencing; chemical sequencing of DNA; automated DNA sequencing; RNA sequencing; chemical synthesis of oligonucleotides; mutation detection: SSCP, DGGE, RFLP.

Unit IV Gene manipulation and protein-DNA interaction	Insertion of foreign DNA into host cells; transformation, electroporation, transfection; construction of libraries; isolation of mRNA and total RNA; reverse transcriptase and cDNA synthesis; cDNA and genomic libraries; construction of microarrays – genomic arrays, cDNA arrays and oligo arrays; study of protein-DNA interactions: electrophoretic mobility shift assay; DNase footprinting; methyl interference assay, chromatin immunoprecipitation; protein-protein interactions using yeast two-hybrid system; phage display.
Unit V Gene silencing and genome editing technologies	Gene silencing techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems e.g. fruit flies (Drosophila), worms (C. elegans), frogs (Xenopus), fish (zebra fish) and chick; Transgenics - gene replacement; gene targeting; creation of transgenic and knock-out mice; disease model; introduction to genome editing by CRISPR-CAS with specific emphasis on Chinese and American clinical trials.

- 1. Old, R. W., Primrose, S. B., & Twyman, R. M. (2001). Principles of Gene Manipulation: an Introduction to Genetic Engineering. Oxford: Blackwell Scientific Publications.
- 2. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub.
- 4. Selected papers from scientific journals, particularly Nature & Science.
- 5. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest Course Name:	er I Semester II V Semester III Semester IV Immunology	
Course Code: [Course Credit: [Marks Allotted: Theore	BIOT-CT- 202 (For new course keep it blank; else enter the old course code) 4 tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co		
Core		
Department Sp		
Generic Elective		
	- n employability / entrepreneurship? YES γΟ	
Is the course focused of		
Is the course based on A		
	∇ syllabus (applicable in case of change in syllabus only)	
Minor (up to 15		
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of cha	anges	
No changes		

Course Code: BIOT-CT- 202

Course Name: Immunology

Credits: 4

Course Objectives:

The purpose of this course is to teach students about the structural and functional characteristics of immune system components. The focus of this course will be on the immune system's development and the methods through which our bodies elicit immunological responses. This will be crucial for students because it will allow them to predict the type of the immune response that develops in the face of bacterial, viral, or parasite infection and then confirm it through the design of new tests.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Evaluate usefulness of immunology in different pharmaceutical companies;
- Identify proper research lab working in area of their own interests;
- Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figure out kind of immune responses in the setting of infection (viral or bacterial).

Course	Syllabus:
course	Synabas.

Unit I Immunology: fundamental concepts and overview of the immune system	Components of innate and acquired immunity; phagocytosis; complement and inflammatory responses; pathogen recognition receptors (PRR) and pathogen associated molecular pattern (PAMP); innate immune response; mucosal immunity; antigens: immunogens, haptens; Major Histocompatibility Complex: MHC genes, MHC and immune responsiveness and disease susceptibility, Organs of immune system, primary and secondary lymphoid organs.
Unit II Immune responses generated by B and T lymphocytes	Immunoglobulins - basic structure, classes & subclasses of immunoglobulins, antigenic determinants; multigene organization of immunoglobulin genes; B- cell receptor; Immunoglobulin superfamily; principles of cell signaling; basis of self & non-self discrimination; kinetics of immune response, memory; B cell maturation, activation and differentiation; generation of antibody diversity; T-cell maturation, activation and differentiation and T-cell receptors; functional T Cell subsets; cell-mediated immune responses, ADCC; cytokines: properties, receptors and therapeutic uses; antigen processing and presentation- endogenous antigens, exogenous antigens, non-peptide bacterial antigens and super-antigens; cell-cell co-operation, Hapten-carrier system.
Unit III Antigen-antibody interactions Unit IV	Precipitation, agglutination and complement mediated immune reactions; advanced immunological techniques: RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence microscopy, flow cytometry and immunoelectron microscopy; surface plasmon resonance, biosensor assays for assessing ligand –receptor interaction; CMI techniques: lymphoproliferation assay, mixed lymphocyte reaction, cell cytotoxicity assays, apoptosis, microarrays, transgenic mice, gene knock outs. Active and passive immunization; live, killed, attenuated, subunit vaccines;
Vaccinology	vaccine technology: role and properties of adjuvants, recombinant DNA and

	protein based vaccines, plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines; antibody genes and antibody engineering:chimeric, generation of monoclonal antibodies, hybrid monoclonal antibodies; catalytic antibodies and generation of immunoglobulin gene libraries, idiotypic vaccines and marker vaccines, viral-like particles (VLPs), dendritic cell based vaccines, vaccine against cancer, T cell based vaccine, edible vaccine and therapeutic vaccine.
Unit V	Immunity to infection : bacteria, viral, fungal and parasitic infections (with
	examples from each group); hypersensitivity: Type I-IV; autoimmunity; types
Clinical immunology	of autoimmune diseases; mechanism and role of CD4+ T cells; MHC and TCR
	in autoimmunity; treatment of autoimmune diseases; transplantation:
	immunological basis of graft rejection; clinical transplantation and
	immunological basis of grant rejection, chincal transplantation and immunosuppressive therapy; tumor immunology: tumor antigens; immune
	response to tumors and tumor evasion of the immune
	system, cancer immunotherapy; immunodeficiency: primary immunodeficiencies, acquired or secondary immunodeficiencies,
	autoimmune disorder, anaphylactic shock, immunosenescence, immune
	exhaustion in chronic viral infection, immune tolerance, NK cells in chronic
	viral infection and malignancy.
Unit VI	Major histocompatibility complex genes and their role in autoimmune and
Immunogenetics	infectious diseases, HLA typing, human major histocompatibility complex
	(MHC), Complement genes of the human major histocompatibility complex:
	implication for linkage disequilibrium and disease associations, genetic
	studies of rheumatoid arthritis, systemic lupus erythematosus and multiple
	sclerosis, genetics of human immunoglobulin, immunogenetics of
	spontaneous control of HIV, KIR complex.

- 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby Immunology. New York: W.H. Freeman.
- 2. Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub.
- 3. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 4. Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press.
- 5. Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press.
- 6. Parham, P. (2005). The Immune System. New York: Garland Science.

Department Name:	Biotechnology
Program Name:	M.Sc. in Biotechnology
Program Code:	303
Semester: Semest Course Name:	er I Semester II V Semester III Semester IV Genomics, Proteomics and Bioinformatics
Course Code:	BIOT-CT- 203 (For new course keep it blank; else enter the old course code)
Course Credit:	4
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25
Course Type (tick the co	prrect alternatives):
Core	\checkmark
Department Sp	ecific Elective
Generic Elective	
Is the course focused or	n employability / entrepreneurship? YES V O
Is the course focused or	n imparting life skill? YES NO 🗸
Is the course based on A	Activity ? YES NO V
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)
Minor (up to 15	l%) √
Moderate (>15	% and up to 50%)
Major (> 50%)	
Summary of cha	anges
	ger of erstwhile two papers (2 credits each) into a single 4 credit paper. Odifications to accommodate and substantiate each unit has been made.

Course Code: BIOT-CT- 203

Course Name: Genomics, Proteomics and Bioinformatics

Credits: 4

Course Objectives:

The goals of this course are to provide an overview of genomics, proteomics, and their applications, as well as theory and hands-on experience with standard computational tools and databases that aid in the research of molecular biology and evolution-related ideas.

Student Learning Outcomes:

Students should be able to learn the principles of genomics, proteomics, transcriptomics, and metabolomics, as well as their applications in a variety of biological fields. Develop a working grasp of these computational tools and procedures; recognize their significance for exploring specific contemporary biological topics; critically analyze and interpret the outcomes of their research.

Unit I	Drief eveniew of prokenyetic and evidenyetic geneme organization, evtre
	Brief overview of prokaryotic and eukaryotic genome organization; extra-
Basics of genomics	chromosomal DNA: bacterial plasmids, mitochondria and chloroplast.
and proteomics	
Unit II	Genetic and physical maps; markers for genetic mapping; methods and
Genome mapping	techniques used for gene mapping, physical mapping, linkage analysis,
	cytogenetic techniques, FISH technique in gene mapping, somatic cell
	hybridization, radiation hybrid maps, in situ hybridization, comparative
	gene mapping.
Unit III	Human Genome Project, genome sequencing projects for microbes, plants
Genome sequencing	and animals, accessing and retrieving genome project information from the
projects	web.
Unit IV	Identification and classification of organisms using molecular markers- 16S
Comparative	rRNA typing/sequencing, SNPs; use of genomes to understand evolution of
genomics	eukaryotes, track emerging diseases and design new drugs; determining
	gene location in genome sequence.
Unit V	Aims, strategies and challenges in proteomics; proteomics technologies:
Proteomics	2D-PAGE, isoelectric focusing, mass spectrometry, MALDI-TOF, yeast 2-
	hybrid system, proteome databases.
Unit VI	Transcriptome analysis for identification and functional annotation of gene,
Functional genomics	Contig assembly, chromosome walking and characterization of
and proteomics	chromosomes, mining functional genes in genome, gene function- forward
	and reverse genetics, gene ethics; protein-protein and protein-DNA
	interactions; protein chips and functional proteomics; clinical and
	biomedical applications of proteomics; introduction to metabolomics,
	lipidomics, metagenomics and systems biology.
Unit VII	Bioinformatics basics: Computers in biology and medicine; Introduction to
Bioinformatics basics	Unix and Linux systems and basic commands; Database concepts; Protein
	and nucleic acid databases; Structural databases; Biological XML DTD's;
	pattern matching algorithm basics; databases and search tools: biological
	background for sequence analysis; Identification of protein sequence from
	DNA sequence; searching of databases similar sequence; NCBI; publicly
	available tools; resources at EBI; resources on web; database mining tools.

Unit VIII	DNA sequence analysis: gene bank sequence database; submitting DNA
DNA sequence	sequences to databases and database searching; sequence alignment;
analysis	pairwise alignment techniques; motif discovery and gene prediction; local
	structural variants of DNA, their relevance in molecular level processes, and
	their identification; assembly of data from genome sequencing.
Unit IX	Multiple sequence analysis; multiple sequence alignment; flexible sequence
Multiple sequence	similarity searching with the FASTA3 program package; use of CLUSTALW
· ·	and CLUSTALX for multiple sequence alignment; submitting DNA protein
analysis	sequence to databases: where and how to submit, SEQUIN, genome
	centres; submitting aligned sets of sequences, updating submitted
	sequences, methods of phylogenetic analysis.
Unit X	Protein modelling: introduction; force field methods; energy, buried and
Protein modelling	exposed residues; side chains and neighbours; fixed regions; hydrogen
	bonds; mapping properties onto surfaces; fitting monomers; RMS fit of
	conformers; assigning secondary structures; sequence alignment- methods,
	evaluation, scoring; protein completion: backbone construction and side
	chain addition; small peptide methodology; software accessibility; building
	peptides; protein displays; substructure manipulations, annealing.
Unit XI	Protein structure prediction: protein folding and model generation;
Protein structure	secondary structure prediction; analyzing secondary structures; protein
prediction and	loop searching; loop generating methods; homology modelling: potential
-	applications, description, methodology, homologous sequence
virtual library	identification; align structures, align model sequence; construction of
	variable and conserved regions; threading techniques; topology fingerprint
	approach for prediction; evaluation of alternate models; structure
	prediction on a mystery sequence; structure aided sequence techniques of
	structure prediction; structural profiles, alignment algorithms, mutation
	tables, prediction, validation, sequence based methods of structure
	prediction, prediction using inverse folding, fold prediction; significance
	analysis, scoring techniques, sequence-sequence scoring; protein function
	prediction; elements of in silico drug design; Virtual library: Searching
	PubMed, current content, science citation index and current awareness
	services, electronic journals, grants and funding information.
Currented Deedinger	

- 1. Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.
- 2. Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New Biology. Totowa, NJ: Humana Press.
- 3. Campbell, A. M., & Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings.
- 4. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.
- 5. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 6. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.
- 7. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell.
- 8. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.
- 9. Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Function, and Genomics. Oxford: Oxford University Press.

Department Name:	Biotechnology
Program Name:	M.Sc. in Biotechnology
Program Code:	303
Semester: Semest	ter I Semester II V Semester III Semester IV
Course Name:	Laboratory III: Molecular Biology, Molecular Immunology and Genetic Engineering
Course Code:	BIOT-CP- 204 (For new course keep it blank; else enter the old course code)
Course Credit:	4
Marks Allotted: Theore	etical/Practical: 75 Continuing Evaluation: 25
Course Type (tick the co	orrect alternatives):
Core	V
Department Sp	ecific Elective
Generic Electiv	e
Is the course focused o	n employability / entrepreneurship? YES V VO
Is the course focused o	n imparting life skill? YES NO 🗸
Is the course based on	Activity ? YES VO
Percentage of change in	الـــــا n syllabus (applicable in case of change in syllabus only)
Minor (up to 15	5%)
Moderate (>15	% and up to 50%) $$
Major (> 50%)	
Summary of ch	anges
Adding new e	experiments for advancement.

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

Date: 18.04.22

Course Code: BIOT-CP- 204

Course Name: Laboratory III: Molecular Biology, Molecular Immunology and Genetic Engineering

Credits: 4

Course Objectives:

The goal of this course is to give students hands-on experience in molecular biology and genetic engineering. Students will gain knowledge of the practical elements of immune system components as well as their function. Basic and advanced methods for detecting antigen and antibody interactions, isolating distinct lymphocyte cells, and other topics will be covered, as well as how they might be applied to specific research projects.

Student Learning Outcomes:

Students should be able to practice gene cloning, protein expression, and purification on their own. This knowledge would prepare them for a future in the genetic engineering sector or in research facilities undertaking fundamental research.

Students should be able to:

- Evaluate usefulness of immunology in different pharmaceutical companies;
- Identify proper research lab working in area of their own interests;
- Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figure out kind of immune responses in setting of infection (viral or bacterial) by looking at cytokine profile.

- 1. Concept of lac-operon:
 - a. Lactose induction of B-galactosidase.
 - b. Glucose Repression.
 - c. Diauxic growth curve of E. coli
- 2. UV mutagenesis to isolate amino acid auxotroph
- 3. Phage titre with epsilon phage/M13
- 4. Genetic Transfer-Conjugation, gene mapping
- 5. Plasmid DNA isolation and DNA quantitate on
- 6. Restriction Enzyme digestion of plasmid DNA
- 7. Agarose gel electrophoresis
- 8. Polymerase Chain Reaction and analysis by agarose gel electrophoresis
- 9. Vector and Insert Ligation
- 10. Preparation of competent cells
- 11. Transformation of E. coli with standard plasmids, Calculation of transformation efficiency
- 12. Confirmation of the insert by Colony PCR and Restriction mapping
- 13. Expression of recombinant protein, concept of soluble proteins and inclusion body formation in E. coli, SDS-PAGE analysis, Purification of His-tagged protein on Ni-NTA column.
- 14. Selection of animals, preparation of antigens, immunization and methods of blood collection, serum separation and storage.
- 15. Antibody titre by ELISA method.
- 16. Double diffusion, Immuno-electrophoresis and Radial Immuno diffusion.
- 17. Complement fixation test.

- 18. Isolation and purification of IgG from serum or IgY from chicken egg.
- 19. SDS-PAGE, Immunoblotting, Dot blot assays.
- 20. Blood smear identification of leucocytes by Giemsa stain.
- 21. Separation of leucocytes by dextran method.
- 22. Demonstration of Phagocytosis of latex beads and their cryopreservation.
- 23. Separation of mononuclear cells by Ficoll-Hypaque and their cryopreservation.
- 24. Demonstration of ELISPOT.
- 25. Demonstration of FACS.

Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Department Name:	Biotechnology
Program Name:	M.Sc. in Biotechnology
Program Code:	303
Semester: Semest	er I Semester II V Semester III Semester IV
Course Name:	Laboratory IV: Bioinformatics
_	
Course Code:	BIOT-CP- 205 (For new course keep it blank; else enter the old course code)
Course Credit:	4
Marks Allotted: Theore	etical/Practical: 75 Continuing Evaluation: 25
Course Type (tick the co	prrect alternatives):
Core	V
Department Sp	ecific Elective
Generic Elective	e
Is the course focused of	n employability / entrepreneurship? YES V NO
Is the course focused of	n imparting life skill? YES NO 🗸
Is the course based on a	Activity ? YES VIO
Percentage of change in	n syllabus (applicable in case of change in syllabus only)
Minor (up to 15	5%) V
Moderate (>15	% and up to 50%)
Major (> 50%)	
Summary of cha	anges

18.0422

Course Code: BIOT-CP- 205

Course Name: Laboratory IV: Bioinformatics

Credits: 4

Course Objectives:

The goal of this course is to provide hands-on instruction in bioinformatics approaches, such as accessing important public sequence databases, using various computational tools to identify sequences, and analyzing protein and nucleic acid sequences using various software programs.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Describe contents and properties of most important bioinformatics databases;
- Perform text- and sequence-based searches and analyze and discuss results in light of molecular biological knowledge;
- Explain major steps in pairwise and multiple sequence alignment, explain principle and execute pairwise sequence alignment by dynamic programming;
- Predict secondary and tertiary structures of protein sequences.

- 1. Using NCBI and Uniprot web resources.
- 2. Introduction and use of various genome databases.
- 3. Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/TrEMBL, UniProt.
- 4. Similarity searches using tools like BLAST and interpretation of results.
- 5. Multiple sequence alignment using ClustalW.
- 6. Phylogenetic analysis of protein and nucleotide sequences.
- 7. Use of gene prediction methods (GRAIL, Genscan, Glimmer).
- 8. Using RNA structure prediction tools.
- 9. Use of various primer designing and restriction site prediction tools.
- 10. Use of different protein structure prediction databases (PDB, SCOP, CATH).
- 11. Construction and study of protein structures using Deepview/PyMol.
- 12. Homology modelling of proteins.
- 13. Use of tools for mutation and analysis of the energy minimization of protein structures.
- 14. Use of miRNA prediction, designing and target prediction tools.

Department Name:	Biotechnology
Program Name:	M.Sc. in Biotechnology
Program Code:	303
	er I Semester II V Semester III Semester IV
Course Name:	Organic Farming
Course Code:	BIOT-DSE- 206 or new course keep it blank; else enter the old course code
Course Credit:	2
Marks Allotted: Theore	etical/Practical: 42 Continuing Evaluation: 8
Course Type (tick the co	prrect alternatives):
Core	
Department Sp	ecific Elective V
Generic Elective	e
Is the course focused o	n employability / entrepreneurship? YES VIO
Is the course focused o	n imparting life skill? YES NO 🗸
Is the course based on A	Activity ? YES √O
Percentage of change in	n syllabus (applicable in case of change in syllabus only)
Minor (up to 15	5%)
Moderate (>15	% and up to 50%)
Major (> 50%)	V
Summary of ch	anges
New Course	

Course Code: BIOT-DSE- 206

Course Name: Organic Farming

Credits: 2

Course Objectives:

The course is designed to train students on organic farming practices, quality analysis of the products, environmental impact assessment, health benefit of the organic food, entrepreneurship development etc.

Student Learning Outcomes:

On completion of this course, the students should be able to design resource efficient farming system for small and marginal farmers for improving their economy while meeting the quality food demand in a sustainable environment. They would be able to identify scope for entrepreneurship in organic farming and utilize the schemes promoted through knowledge centres and various agencies.

Unit I:	Key principles of organic agriculture, the ecological goal, hazards of chemical use,
Introduction and	biodiversity threats and health risks, pesticide contamination in soil, water and
fundamental	food, social and economic impacts, Indian organic logo, NPOP certification mark,
concepts	Organic food regulation in India, Government initiatives: role of ICAR, National
	Horticulture Mission, Rashtriya Krishi Vikas Yojana.
	Activity: Assignment/Seminar on relevant topics.
	Activity. Assignment/seminar on relevant topics.
Unit II: Soil and	Essential plant nutrients and their sources, soil composition and properties,
nutrient	impact of physical and chemical properties of soil in plant growth, irrigation,
management in	
organic farming	influence of organic matter in soil fertility, types of problem soils and their
	reclamation, manures, bulky and concentrated organic manures, composting:
	methods and benefits, vermicomposting, biofertilizers, role of microbes in
	improving soil fertility.
	Activity: Basic techniques for preparation and application of composts, manures
	and microbial fertilizers: Vermicompost, Jeevamrit, Shivansh Khad, Panchagavya,
	Amrit Pani,general compost, Neem-khol& Mustard-khol, Leaf Manure, Waste
	Decomposer, Azotobacter, Rhizobium, Nitrobacter, Azospirillum, Phosphate
	solubilizing bacteria, Potash mobilizing bacteria.
Unit IV: Organic	Requirements in an organic farm, choice of crops and varieties, modern concepts
farming	of tillage, mono and multiple cropping systems, crop rotation, seed treatments
techniques	and sowing, integrated farming systems, livestock in organic farming, weed
	management, water management, pure and integrated organic farming:
	concepts and benefits, developed farming systems: permaculture, zero-budget
	natural farming, bio-dynamic agriculture.
	Activity: Organic farming practices, Mushroom cultivation technique, Techniques
	in cultivation of strawberry, dragon fruit etc.
Unit V:	Types of pests and diseases of major crops, cultural controls, physical methods,

Ecofriendly plant	biological methods of plant protection: botanical pesticides, biopesticides,
protection	bioherbicides, role of neem, important microbesin biocontrol: <i>Trichoderma</i> ,
	Pseudomonas, Bacillus spp., Bacillus thuringensis, Baculoviruses, integrated pest
	management: concepts and protocols, post-harvest management of organic
	crops.
	Activity:Identification of common crop diseases, Preparation and application of
	Neemastra, Dashparni ark, Verm wash, Neem oil/Caster Oil, Trichoderma viride,
	Trichoderma harzianum, Pseudomonas florescence.
Unit VI: Organic	Purpose and process of certification for organic products, National Standards for
certification and	Organic Production (NSOP), requirements for conversion to organic, storage and
entrepreneurship	transport, field inspection, Scope in Bio-entrepreneurship, Entrepreneurship
	development programs of public and private agencies (MSME, DBT, BIRAC, Make
	In India), challenges in marketing in bio business, demand-supply, viability of a
	farm, financial management issues of procurement of capital and management
	of costs. Introduction to IP, farmers rights act.
	Activity: Preparation and presentation of project proposalrelevant to bio- entrepreneurship development.

Somasundaram, E., Udhaya Nandhini, D., Meyyappan, M. (2021). Principles of Organic Farming, CRC Press, London

Shiva, V., Pande, P. and J. Singh (2004). Principles of Organic Farming: Renewing the Earth's Harvest. Navdanya, New Delhi.

Gomez I., Thivant, L. (2017). Training Manual for Organic Agriculture. Scientific Publishers, United Book Prints.

Department Name:	Biotechnology
Program Name:	M.Sc. in Biotechnology
Program Code:	303
	er I Semester II V Semester III Semester IV
Course Name:	Plant Tissue Culture
Course Code:	BIOT-DSE-207 (For new course keep it blank; else enter the old course code)
Course Credit:	2
Marks Allotted: Theore	
Course Type (tick the co	prrect alternatives):
Core	
Department Sp	ecific Elective V
Generic Elective	2
Is the course focused or	n employability / entrepreneurship? YES \vee O
Is the course focused or	n imparting life skill? YES NO 🗸
Is the course based on A	Activity ? YES V O 🛛
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)
Minor (up to 15	%) V
Moderate (>15% and up to 50%)	
Major (> 50%)	
Summary of cha	anges
New Course	

Course Name: Plant Tissue Culture

Credits: 2

Course Objectives:

This course aims to introduce students to the fundamental principles of plant tissue culture as well as its applications. To give students hands-on experience in labs with the most frequent of these approaches, as well as demonstrations of more sophisticated or unique techniques.

Student Learning Outcomes:

At the end of the course, students should be able to: disinfest and place into culture suitable explants capable of being cultured and multiplied, make culture medium from reagent grade chemicals and stock solutions, routinely transfer cultures without contamination, and analyze the usefulness of information available from the scientific literature that deals with plant tissue culture.

Course Syllabus:

Unit- I	Introduction and history of plants tissue culture. Tissue Culture media (composition and preparation). Types of culture: Callus culture, cell suspension culture, single cell culture, organogenesis, somatic embryogenesis; somaclonal variation; clonal propagation transfer and establishment of whole plants in soil.
Unit- II	Methods of Micropropagation and their application in forestry, floriculture, agriculture and conservation of biodiversity and threatened plants. Applications of plants biotechnology in breeding and crop improvement anther, embryo and endosperm culture, production of haploids, Male sterile plant. Application of plants tissue culture in plant pathology. Development of virus free plants. Growth of obligate parasites in culture. Development of disease resistance. Screening of germplasm.
Unit- III	In vitro pollination, embryo culture and embryo rescue. Protoplast isolation, culture and fusion; selection of hybrid cell and regeneration of hybrid plants; symmetric and asymmetric hybrids, cybrids. Anther and pollen culture: production of haploid plants and homozygous lines. Crop preservation and germplasm conservation.
Unit- IV	Transgenic plants and Gene transfer methods, Selection of clones marker and reporter genes in screening methods. Molecular markers: RFLP, AFLP, RAPD and SSR markers. Natural Products with special reference to alkaloids: production in plant tissue culture. Optimization, extraction of alkaloids and steroids, selection for cells for higher yields. Biotransformation, immobilization, elicitors and hairy root culture for production of useful metabolites. Antisense RNA technology and its application.

Suggested Readings:

1. S.S. Bhojwani and M.K. Razdan : Plant Tissue Culture - Theory & Practice, Elsevier, London, 1983.

- 2. J. Reinert and Y.P.S. Bajaj : Plant Cell, tissue and Organ Culture, Narosa Publishing House, New Delhi, 1989.
- 3. J. Reinert and M.M. Yeoman : Plant Cell & Tissue Culture a laboratory manual, Narosa Publishing House, New Delhi, 1982.
- 4. Plant Tissue Culture Concepts and Laboratory Exercises, Second Edition, Robert N Trigiano, Dennis J Gray, CRC Press November 1999
- 5. Plant Biotechnology by Adrian Slater, Nigel W. Scott and Mark R. Fowler, Second Edition, Oxford Publisher

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest Course Name:	er I Semester II Semester III V Semester IV Bioprocess Engineering & Technology		
Course Code:	BIOT-CT- 301 (For new course keep it blank; else enter the old course code)		
Course Credit:			
Marks Allotted: Theore			
Course Type (tick the co	prrect alternatives):		
Core	V		
Department Sp	ecific Elective		
Generic Elective			
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused or	s the course focused on imparting life skill? YES NO $$		
Is the course based on A	the course based on Activity ? YES NO V		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	Minor (up to 15%)		
Moderate (>159	Moderate (>15% and up to 50%)		
Major (> 50%)			
Summary of changes			
Certain important subject content have been introduced in the course content.			

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

Date: 18.04.22

Semester Three

Course Code: BIOT-CT- 301

Course Name: Bioprocess Engineering & Technology

Credits: 4

Course Objectives:

The goals of this course are to teach students the fundamental ideas of bioprocess technology and its applications, preparing them to meet the challenges of the biotechnology industry's new and expanding fields.

Student Learning Outcomes:

Students should be able to:

- Appreciate relevance of microorganisms from industrial context;
- Carry out stoichiometric calculations and specify models of their growth;
- Give an account of design and operations of various fermenters;
- Present unit operations together with the fundamental principles for basic methods in production technique for bio-based products;
- Calculate yield and production rates in a biological production process, and also interpret data;
- Calculate the need for oxygen and oxygen transfer;
- Critically analyze any bioprocess from market point of view;
- Give an account of important microbial/enzymatic industrial processes in food and fuel industry.

Unit I	Isolation, screening and maintenance of industrially important microbes;
Basic principles of	microbial growth and death kinetics (an example from each group,
biochemical	particularly with reference to industrially useful microorganisms); strain
engineering	improvement for increased yield and other desirable characteristics.
Unit II	Elemental balance equations; metabolic coupling – ATP and NAD+; yield
Stoichiometry and	coefficients; unstructured models of microbial growth; structured models
models of microbial	of microbial growth; Mass transfer of oxygen, fluid rheology.
growth	
Unit III	General design information, Material and energy balance, Process flow
Bioreactor design and	sheet, Scale up and scale down issues, Scale up and downstream processes.
analysis	Selection and specifications of bioprocess equipments, Facility design
	aspects. Utilities, Process economics Batch and continuous fermenters;
	modifying batch and continuous reactors: chemostat with recycle,
	multistage chemostat systems, fed-batch operations; conventional
	fermentation v/s biotransformation; immobilized cell systems; large scale
	animal and plant cell cultivation; fermentation economics; upstream
	processing: media formulation and optimization; sterilization; aeration,
	agitation and heat transfer in bioprocess.

Unit IV	Separation of insoluble products - filtration, centrifugation, sedimentation,
Downstream	flFloocculation; Biomass removal and disruption, Precipitation by salts,
processing and	solvents, Membrane based purification, Adsorption and chromatography,
product recovery	Extraction (solvent, aqueous two-phase, super critical), reverse osmosis,
	ultra and micro filtration, electrophoresis; final purification: drying;
	crystallization; storage and packaging.
Unit V	Isolation of micro-organisms of potential industrial interest; strain
Fermentation	improvement; market analysis; equipment and plant costs; media;
economics	sterilization, heating and cooling; aeration and agitation; bath-process cycle
	times and continuous cultures; recovery costs; water usage and recycling;
	effluent treatment and disposal.
Unit VI	Mechanism of enzyme function and reactions in process techniques;
Applications of	enzymatic bioconversions e.g. starch and sugar conversion processes; high-
enzyme technology in	fructose corn syrup; interesterified fat; hydrolyzed protein etc. and their
food processing	downstream processing; baking by amylases, deoxygenation and
	desugaring by glucoses oxidase, beer mashing and chill proofing; cheese
	making by proteases and various other enzyme catalytic actions in food
	processing.
Unit VII	Fermented foods and beverages; food ingredients and additives prepared
Applications of micro-	by fermentation and their purification; fermentation as a method of
bial technology in food	preparing and preserving foods; microbes and their use in pickling,
process operations	producing colours and flavours, alcoholic beverages and other products;
and production,	process wastes-whey, molasses, starch substrates and other food wastes
biofuels and	for bioconversion to useful products; bacteriocins from lactic acid bacteria –
biorefinery	production and applications in food preservation; biofuels and biorefinery

- 1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
- 2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press.
- 3. Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New York: M. Dekker.
- 4. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest Course Name:	er I Semester II Semester III ✓ Semester IV Plant and Animal Biotechnology		
Course Code: [Course Credit: [Marks Allotted: Theore	BIOT-CT- 302 (For new course keep it blank; else enter the old course code) 4 tical/Practical: 75 Continuing Evaluation: 25		
Core	Department Specific Elective		
	n employability / entrepreneurship? YES V O		
Is the course focused or			
	the course based on Activity ? YES NO V		
Minor (up to 15	ercentage of change in syllabus (applicable in case of change in syllabus only) Minor (up to 15%)		
Major (> 50%)	Moderate (>15% and up to 50%)		
Summary of changes			
Segregation of plant and animal topics.			

Course Code: BIOT-CT- 302

Course Name: Plant and Animal Biotechnology

Credits: 4

Course Objectives:

The objectives of this course are to introduce students to the principles, practices and application of animal biotechnology, plant tissue culture, plant and animal genomics, genetic transformation and molecular breeding of plants and animals.

Student Learning Outcomes:

Students should be able to gain fundamental knowledge in animal and plant biotechnology and their applications.

Unit I	Plant tissue culture: historical perspective; totipotency; Tissue culture
Plant tissue culture	media composition-nutrients and plant hormones; sterilization techniques;
	Types of plant tissue culture: Callus culture, Cell suspension culture,
	Organogenesis; Somatic embryogenesis; Applications of tissue culture -
	micropropagation; somaclonal variation; androgenesis and its applications
	in genetics and plant breeding; synthetic seed production; protoplast
	isolation, protoplast culture and somatic hybridization; germplasm
	conservation and cryopreservation; somatic hybridization - methods and
	applications; cybrids and somatic cell genetics; plant cell cultures for
	secondary metabolite production.
Unit II	Animal cell culture: brief history of animal cell culture; cell culture media
Animal cell culture	and reagents; culture of mammalian cells, tissues and organs; primary
	culture, secondary culture, continuous cell lines, suspension cultures;
	application of animal cell culture for virus isolation and in vitro testing of
	drugs, testing of toxicity of environmental pollutants in cell culture,
	application of cell culture technology in production of human and animal
	viral vaccines and pharmaceutical proteins.
Unit III	Genetic engineering: Agrobacterium-plant interaction; virulence; Ti and Ri
Plant genetic	plasmids; opines and their significance; T-DNA transfer; disarmed Ti
manipulation	plasmid; Genetic transformation - Agrobacterium-mediated gene delivery;
	cointegrate and binary vectors and their utility; direct gene transfer - PEG-
	mediated, electroporation, particle bombardment and alternative methods;
	screenable and selectable markers; characterization of transgenics;
	chloroplast transformation; marker-free methodologies; advanced
	methodologies - cisgenesis, intragenesis and genome editing; molecular
	pharming - concept of plants as biofactories, production of industrial
	enzymes and pharmaceutically important compounds.
Unit IV	Animal reproductive biotechnology: structure of sperms and ovum;
Animal reproductive	cryopreservation of sperms and ova of livestock; artificial insemination;
biotechnology and	super ovulation, embryo recovery and in vitro fertilization; culture of
vaccinology	embryos; cryopreservation of embryos; embryo transfer technology;
	transgenic manipulation of animal embryos; applications of transgenic
	animal technology; animal cloning - basic concept, cloning for conservation

	for conservation endangered species; Vaccinology: history of development of vaccines, introduction to the concept of vaccines, conventional methods of animal vaccine production, recombinant approaches to vaccine production, modern vaccines.
Unit V Molecular mapping and marker assisted selection	Molecular markers - Hybridization and PCR based markers RFLP, RAPD, STS, SSR, AFLP, SNP markers; DNA fingerprinting-principles and applications; introduction to mapping of genes/QTLs; marker-assisted selection; strategies for Introducing genes of biotic and abiotic stress resistance in plants; genetic basis for disease resistance in animals; molecular diagnostics of pathogens in plants and animals; detection of meat adulteration using DNA based methods.

- 1. Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- 2. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science.
- 3. Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: an Introduction to Genetic Engineering. Oxford: Oxford University Press.
- 4. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants. Chichester, West Sussex: John Wiley & Sons.
- 5. Umesha, S. (2013). Plant Biotechnology. The Energy And Resources.
- 6. Glick, B. R., & Pasternak, J. J. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, D.C.: ASM Press.
- 7. Brown, T. A. (2006). Gene Cloning and DNA Analysis: an Introduction. Oxford: Blackwell Pub.
- 8. Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.
- 9. Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
- 10. Gordon, I. (2005). Reproductive Techniques in Farm Animals. Oxford: CAB International.
- 11. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker.
- 12. Pörtner, R. (2007). Animal Cell Biotechnology: Methods and Protocols. Totowa, NJ: Humana Press.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I Semester II Semester III √ Semester IV		
Course Name:	Laboratory V: Bioprocess Engineering & Technology		
_			
Course Code:	BIOT-CP- 303 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core	\checkmark		
Department Sp	ecific Elective		
Generic Elective			
Is the course focused or	n employability / entrepreneurship? YES \vee NO		
Is the course focused or	s the course focused on imparting life skill? YES NO 🗸		
Is the course based on A	s the course based on Activity ? YES VO		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	%)		
Moderate (>15	Moderate (>15% and up to 50%)		
Major (> 50%)	Major (> 50%)		
Summary of changes			
Minor changes.			

Course Code: BIOT-CP- 303

Course Name: Laboratory V: Bioprocess Engineering & Technology

Credits: 4

Course Objectives:

The objectives of this laboratory course are to provide hands-on training to students in upstream and downstream unit operations.

Student Learning Outcomes:

Students should be able to:

- Investigate, design and conduct experiments, analyze and interpret data, and apply the laboratory skills to solve complex bioprocess engineering problems;
- Apply skills and knowledge gained will be useful in solving problems typical of bio industries and research.

Course Syllabus:

1. Basic Microbiology techniques

- a) Scale up from frozen vial to agar plate to shake flask culture.
- b) Instrumentation: Microplate reader, spectrophotometer, microscopy.
- c) Isolation of microorganisms from soil samples.
- 2. Experimental set-up
 - a) Assembly of bioreactor and sterilization.
 - b) Growth kinetics.
 - c) Substrate and product inhibitions.
 - d) Measurement of residual substrates.
- 3. Data Analysis
 - a) Introduction to Metabolic Flux Analysis (MFA).
- 4. Fermentation
 - a) Batch.
 - b) Fed-batch.
 - c) Continuous.
- 5. Unit operations
 - a) Microfiltrations: Separation of cells from broth.
 - b) Bioseparations: Various chromatographic techniques and extractions.

6. Bioanalytics

a) Analytical techniques like HPLC, FPLC, GC, GC-MS etc. for measurement of amounts of products/substrates

- 1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
- 2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press.
- 3. Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New York:
- 4. M. Dekker.
- 5. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.
- 6. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
	er I Semester II V Semester IV		
Course Name:	Bioentrepreneurship		
Course Code:	BIOT-DSE- 304 For new course keep it blank; else enter the old course code)		
Course Credit:	2		
Marks Allotted: Theore			
Course Type (tick the co	prrect alternatives):		
Core			
Department Sp	ecific Elective V		
Generic Elective	2		
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused or	the course focused on imparting life skill? YES NO $$		
Is the course based on A	the course based on Activity ? YES NO V		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	Minor (up to 15%)		
Moderate (>15	Moderate (>15% and up to 50%)		
Major (> 50%)			
Summary of cha	anges		
Minor changes.			

Course Name: Bioentrepreneurship

Credits: 2

Course Objectives:

Research and business belong together and both are needed. In a rapidly developing life science industry, there is an urgent need for people who combine business knowledge with the understanding of science & technology. Bio-entrepreneurship, an interdisciplinary course, revolves around the central theme of how to manage and develop life science companies and projects. The objectives of this course are to teach students about concepts of entrepreneurship including identifying a winning business opportunity, gathering funding and launching a business, growing and nurturing the organization and harvesting the rewards.

Student Learning Outcomes:

Students should be able to gain entrepreneurial skills, understand the various operations involved in venture creation, identify scope for entrepreneurship in biosciences and utilize the schemes promoted through knowledge centres and various agencies. The knowledge pertaining to management should also help students to be able to build up a strong network within the industry.

	· · · · · · · · · · · · · · · · · · ·
Unit I	Introduction and scope in Bio-entrepreneurship, Types of bio-industries and
Innovation and	competitive dynamics between the sub-industries of the bio-sector (e.g.
entrepreneurship in	pharmaceuticals vs. Industrial biotech), Strategy and operations of bio-
bio-business	sector firms: Factors shaping opportunities for innovation and
	entrepreneurship in bio-sectors, and the business implications of those
	opportunities, Alternatives faced by emerging bio-firms and the relevant
	tools for strategic decision, Entrepreneurship development programs of
	public and private agencies (MSME, DBT, BIRAC, Make In India), strategic
	dimensions of patenting & commercialization strategies.
Unit II	Negotiating the road from lab to the market (strategies and processes of
Bio markets -	negotiation with financiers, government and regulatory authorities), Pricing
business strategy	strategy, Challenges in marketing in bio business (market conditions &
and marketing	segments; developing distribution channels, the nature, analysis and
	management of customer needs), Basic contract principles, different types
	of agreement and contract terms typically found in joint venture and
	development agreements, Dispute resolution skills.
Unit III	Business plan preparation including statutory and legal requirements,
Finance and	Business feasibility study, financial management issues of procurement of
accounting	capital and management of costs, Collaborations & partnership,
	Information technology.
Unit IV	Technology – assessment, development & upgradation, Managing
Technology	technology transfer, Quality control & transfer of foreign technologies,
management	Knowledge centers and Technology transfer agencies, Understanding of
	regulatory compliances and procedures (CDSCO, NBA, GCP, GLA, GMP).

- 1. Adams, D. J., & Sparrow, J. C. (2008). Enterprise for Life Scientists: Developing Innovation and Entrepreneurship in the Biosciences. Bloxham: Scion.
- 2. Shimasaki, C. D. (2014). Biotechnology Entrepreneurship: Starting, Managing, and Leading Biotech Companies. Amsterdam: Elsevier. Academic Press is an imprint of Elsevier.
- 3. Onetti, A., & Zucchella, A. Business Modeling for Life Science and Biotech Companies: Creating Value and Competitive Advantage with the Milestone Bridge. Routledge.
- 4. Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press.
- 5. Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I Semester II Semester III 🛛 🗸 Semester IV		
Course Name:	Intellectual Property Rights, Biosafety and Bioethics		
Course Code:	BIOT-DSE- 305 (For new course keep it blank; else enter the old course code)		
Course Credit:	2		
Marks Allotted: Theore	tical/Practical: 42 Continuing Evaluation: 8		
Course Type (tick the co	prrect alternatives):		
Core			
Department Sp	ecific Elective √		
Generic Elective	2		
Is the course focused or	n employability / entrepreneurship? YES 🗸 O		
Is the course focused or	n imparting life skill? YES NO 🗸		
Is the course based on A	Activity ? YES NO 🗸		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	5%) V		
Moderate (>15	% and up to 50%)		
Major (> 50%)			
Summary of changes			
Minor changes			

Course Name: Intellectual Property Rights, Biosafety and Bioethics

Credits: 2

Course Objectives:

The objectives of this course are:

- To provide basic knowledge on intellectual property rights and their implications in biological research and product development;
- To become familiar with India's IPR Policy;
- To learn biosafety and risk assessment of products derived from biotechnolo- gy and regulation of such products;
- To become familiar with ethical issues in biological research. This course will focus on consequences of biomedical research technologies such as cloning of whole organisms, genetic modifications, DNA testing.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Understand the rationale for and against IPR and especially patents;
- Understand why India has adopted an IPR Policy and be familiar with broad outline of patent regulations;
- Understand different types of intellectual property rights in general and protection of products derived from biotechnology research and issues related to application and obtaining patents;
- Gain knowledge of biosafety and risk assessment of products derived from recombinant DNA research and environmental release of genetically modified organisms, national and international regulations;
- Understand ethical aspects related to biological, biomedical, health care and biotechnology research.

Unit I	Introduction to intellectual property; types of IP: patents, trademarks,
Introduction to IPR	copyright & related rights, industrial design, traditional knowledge,
	geographical indications, protection of new GMOs; International framework
	for the protection of IP; IP as a factor in R&D IPs of relevance to
	biotechnology and few case studies; introduction to history of GATT, WTO,
	WIPO and TRIPS; plant variety protection and farmers rights act; concept of
	'prior art': invention in context of "prior art"; patent databases - country-
	wise patent searches (USPTO, EPO, India); analysis and report formation.
Unit II	Basics of patents: types of patents; Indian Patent Act 1970; recent
Patenting	amendments; WIPO Treaties; Budapest Treaty; Patent Cooperation Treaty
	(PCT) and implications; procedure for filing a PCT application; role of a
	Country Patent Office; filing of a patent application; precautions before
	patenting-disclosure/non-disclosure - patent application- forms

	and guidelines including those of National Bio-diversity Authority (NBA) and other regulatory bodies, fee structure, time frames; types of patent applications: provisional and complete specifications; PCT and conventional patent applications; international patenting-requirement, procedures and costs; financial assistance for patenting- introduction to existing schemes; publication of patents-gazette of India, status in Europe and US; patent infringement- meaning, scope, litigation, case studies and examples; commercialization of patented innovations; licensing – outright sale, licensing, royalty; patenting by research students and scientists- university/organizational rules in India and abroad, collaborative research - backward and forward IP; benefit/credit sharing among parties/community, commercial (financial) and non-commercial incentives.
Unit III Biosafety	Biosafety and Biosecurity - introduction; historical background; introduction to biological safety cabinets; primary containment for biohazards; biosafety levels; GRAS organisms, biosafety levels of specific microorganisms; recommended biosafety levels for infectious agents and infected animals; definition of GMOs & LMOs; principles of safety assessment of transgenic plants – sequential steps in risk assessment; concepts of familiarity and substantial equivalence; risk – environmental risk assessment and food and feed safety assessment; problem formulation – protection goals, compilation of relevant information, risk characterization and development of analysis plan; risk assessment of transgenic crops vs cisgenic plants or products derived from RNAi, genome editing tools.
Unit IV National and international regulations	International regulations – Cartagena protocol, OECD consensus documents and Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents, regulatory framework – RCGM, GEAC, IBSC and other regulatory bodies; Draft bill of Biotechnology Regulatory authority of India - containments – biosafety levels and category of rDNA experiments; field trails – biosafety research trials – standard operating procedures - guidelines of state governments; GM labeling – Food Safety and Standards Authority of India (FSSAI).
Unit V Bioethics	Introduction, ethical conflicts in biological sciences - interference with nature, bioethics in health care - patient confidentiality, informed consent, euthanasia, artificial reproductive technologies, prenatal diagnosis, genetic screening, gene therapy, transplantation. Bioethics in research – cloning and stem cell research, Human and animal experimentation, animal rights/welfare, Agricultural biotechnology - Genetically engineered food, environmental risk, labeling and public opinion. Sharing benefits and protecting future generations - Protection of environment and biodiversity – biopiracy.

- 1. Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. New Delhi: Tata McGraw-Hill Pub.
- 2. National IPR Policy, Department of Industrial Policy & Promotion, Ministry of Commerce, Gol
- 3. Complete Reference to Intellectual Property Rights Laws. (2007). Snow White Publication Oct.

- 4. Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell.
- Office of the Controller General of Patents, Design & Trademarks; Department of Industrial Policy & Promotion; Ministry of Commerce & Industry; Government of India. http://www.ipindia.nic.in/
- 6. Karen F. Greif and Jon F. Merz, Current Controversies in the Biological Sciences -Case Studies of Policy Challenges from New Technologies, MIT Press
- 7. World Trade Organisation. http://www.wto.org
- 8. World Intellectual Property Organisation. http://www.wipo.int
- 9. International Union for the Protection of New Varieties of Plants. http://www.upov.int
- 10. National Portal of India. http://www.archive.india.gov.in
- 11. National Biodiversity Authority. http://www.nbaindia.org
- 12. Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry of Science and Technology, Govt. of India. Retrieved from http://www.envfor.nic.in/ divisions/csurv/geac/annex-5.pdf
- Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., Wu, F. (2009). Problem Formulation in the Environmental Risk Assessment for Genetically Modified Plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9
- 14. Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). An Overview of General Features of Risk Assessments of Genetically Modified Crops. Euphytica, 164(3), 853-880. doi:10.1007/s10681-007-9643-8
- 15. Guidelines for Safety Assessment of Foods Derived from Genetically Engineered Plants. 2008.
- 16. Guidelines and Standard Operating Procedures for Confined Field Trials of Regulated Genetically Engineered Plants. 2008. Retrieved from http://www.igmoris.nic.in/guidelines1.asp
- 17. Alonso, G. M. (2013). Safety Assessment of Food and Feed Derived from GM Crops: Using Problem Formulation to Ensure "Fit for Purpose" Risk Assessments. Retrieved from http://biosafety.icgeb.org/inhousepublicationscollectionbiosafetyreviews.

Department Name:	Biotechnology			
Program Name:	M.Sc. in Biotechnology			
Program Code:	303			
Semester: Semest Course Name:	er I Semester II Semester III V Semester IV			
course Name.	Molecular Diagnostics			
Course Code:	BIOT-DSE- 306 (For new course keep it blank; else enter the old course code)			
Course Credit:	2			
Marks Allotted: Theore	etical/Practical: 42 Continuing Evaluation: 8			
Course Type (tick the co	prrect alternatives):			
Core				
Department Sp	ecific Elective 🗸			
Generic Elective	e			
Is the course focused of	n employability / entrepreneurship? YES V NO			
Is the course focused of	Is the course focused on imparting life skill? YES NO 🗸			
Is the course based on a	Activity ? YES NO 🗸			
Percentage of change in	n syllabus (applicable in case of change in syllabus only)			
Minor (up to 15	5%) V			
Moderate (>15	% and up to 50%)			
Major (> 50%)				
Summary of ch	anges			
Minor modifi	cation			

Date: 18.04.22

Course Name: Molecular Diagnostics

Credits: 2

Course Objectives:

The objectives of this course are to sen-sitize students about recent advances in molecular biology and various facets of molecular medicine which has potential to profoundly alter many aspects of modern medicine including pre- or post-natal analysis of genetic diseases and identification of individuals predisposed to disease ranging from common cold to cancer.

Student Learning Outcomes:

Students should be able to understand various facets of molecular procedures and basics of genomics, proteomics and metabolomics that could be employed in early diagnosis and prognosis of human diseases.

Unit I	DNA DNA Dratain. An avancious chromosomal structure & mutations. DNA						
	DNA, RNA, Protein: An overview; chromosomal structure & mutations; DNA						
Genome biology in	polymorphism: human identity; clinical variability and genetically						
health and disease	determined adverse reactions to drugs.						
Unit II	PCR: Real-time; ARMS; Multiplex; ISH; FISH; ISA; RFLP; DHPLC; DGGE; CSCE;						
Genome: resolution,	SSCP; Nucleic acid sequencing: new generations of automated sequencers;						
detection & analysis	Microarray chips; EST; SAGE; microarray data normalization & analysis;						
	molecular markers: 16S rRNA typing; Diagnostic proteomics: SELDI-TOF-MS;						
	Bioinformatics data acquisition & analysis.						
Unit III	Metabolite profile for biomarker detection the body fluids/tissues in						
Diagnostic	various metabolic disorders by making using LCMS & NMR technological						
metabolomics	platforms.						
Unit IV	Direct detection and identification of pathogenic-organisms that are slow						
Detection and	growing or currently lacking a system of in vitro cultivation as well as						
identity of microbial	genotypic markers of microbial resistance to specific antibiotics.						
diseases							
Unit V	Exemplified by two inherited diseases for which molecular diagnosis has						
Detection of	provided a dramatic improvement of quality of medical care: Fragile X						
inherited diseases	Syndrome: Paradigm of new mutational mechanism of unstable triplet						
	repeats, von-Hippel Lindau disease: recent acquisition in growing number						
	of familial cancer syndromes.						
Unit VI	Detection of recognized genetic aberrations in clinical samples from cancer						
Molecular oncology	patients; types of cancer-causing alterations revealed by next-generation						
	sequencing of clinical isolates; predictive biomarkers for personalized onco-						
	therapy of human diseases such as chronic myeloid leukemia, colon, breast,						
	lung cancer and melanoma as well as matching targeted therapies with						
	patients and preventing toxicity of standard systemic therapies.						
Unit VII	Quality oversight; regulations and approved testing.						
Quality assurance							
and control							

- 1. Campbell, A. M., & Heyer, L. J. (2006). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings.
- 2. Brooker, R. J. (2009). Genetics: Analysis & Principles. New York, NY: McGraw-Hill.
- 3. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, DC: ASM Press.
- 4. Coleman, W. B., & Tsongalis, G. J. (2010). Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ: Humana Press.

Department Name:	Biotechnology			
Program Name:	M.Sc. in Biotechnology			
Program Code:	303			
Semester: Semest	er I Semester II Semester III V Semester IV			
Course Name:	Drug Discovery and Development			
Course Code:	BIOT-DSE- 307 (For new course keep it blank; else enter the old course code)			
Course Credit:	2			
Marks Allotted: Theore	tical/Practical: 42 Continuing Evaluation: 8			
Course Type (tick the co	prrect alternatives):			
Core				
Department Sp	ecific Elective V			
Generic Elective				
Is the course focused or	n employability / entrepreneurship? YES V O			
Is the course focused or	n imparting life skill? YES NO V			
s the course based on Activity ? YES NO V				
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)			
Minor (up to 15	%) V			
Moderate (>15	% and up to 50%)			
Major (> 50%)				
Summary of cha	anges			
-	nges have been made. One subsection entitled "Drug delivery systems' uded in new CBCS syllabus.			

Course Name: Drug Discovery and Development

Credits: 2

Course Objectives:

This course will give a broad overview of research and development carried out in industrial setup towards drug discovery.

Student Learning Outcomes:

On completion of this course, students should be able to understand basics of R&D in drug discovery and should be able to apply knowledge gained in respective fields of pharmaceutical industry.

Unit I	Identification of target or drug leads associated with a particular disease by a							
Target identification	number of different techniques including combinations of molecular							
and molecular	modeling, combinatorial libraries and high-throughput screening (HTS);							
modelling	Conceptualizing the automation of the HTS process and the importance of							
modelling	bioinformatics and data processing in identification of lead compounds;							
	Rational drug design, based on understanding the three-dimensional							
	structures and physicochemical properties of drugs and receptors; Modelling							
	drug/ receptor interactions with the emphasis on molecular mechanisms,							
	molecular dynamics simulations and homology modelling; Conformational							
	sampling, macromolecular folding, structural bioinformatics, receptor-based							
	and ligand-based design and docking methods, in silico screening of libraries,							
	semi-empirical and ab-initio methods, QSAR methods, molecular diversity,							
	design of combinatorial libraries of drug-like molecules, macromolecular and							
	chemical databases.							
Unit II	Identification of relevant groups on a molecule that interact with a receptor							
Lead optimization	and are responsible for biological activity; Understanding structure activity							
	relationship; Structure modification to increase potency and therapeutic							
	index; Concept of quantitative drug design using Quantitative structure-							
	activity relationship models (QSAR models) based on the fact that the							
	biological properties of a compound are a function of its physicochemical parameters such as solubility, lipophilicity, electronic effects, ionization,							
	stereochemistry, etc.; Bioanalytical assay development in support of in vitro							
	and in vivo studies (LC/MS/MS, GC/MS and ELISA).							
Unit III	Principles of drug absorption, drug metabolism and distribution - intestinal							
Preclinical	absorption, metabolic stability, drug-drug interactions, plasma protein							
development	binding assays, metabolite profile studies, Principles of toxicology,							
	Experimental design for preclinical and clinical PK/PD/TK studies, Selection							
	of animal model; Regulatory guidelines for preclinical PK/ PD/TK studies;							
	Scope of GLP, SOP for conduct of clinical & non clinical testing, control on							
	animal house, report preparation and documentation Integration of non-							
	clinical and preclinical data to aid design of clinical studies.							
Unit IV	Requirements of GMP implementation, Documentation of GMP practices,							
Drug manufacturing								
	concept and philosophy of TQM, ICH and ISO 9000; ICH guidelines for							
	Manufacturing, Understanding Impurity Qualification Data, Stability Studies.							

Unit V	Objectives of Phase I, II, III and IV clinical studies, Clinical study design,						
Clinical trial	enrollment, sites and documentation, Clinical safety studies: Adverse events						
designand Drug	and adverse drug reactions, Clinical PK, pharmacology, drug-drug interaction						
delivery systems	studies, Statistical analysis and documentation.						
	Introduction to Controlled and Novel Drug Delivery Systems, Sustained						
	release dosage forms, nanoparticles, liposomes as drug carrier, Targeted						
	Drug Delivery						
Unit VI	Global Regulatory Affairs and different steps involved, Regulatory Objectives,						
Fundamentals of	Regulatory Agencies; FDA guidelines on IND and NDA submissions, Studies						
regulatory affairs	required for IND and NDA submissions for oncology, HIV, cardiovascular						
and bioethics	indications, On-label vs. off-label drug use GCP and Requirements of GCP						
	Compliance, Ethical issues and Compliance to current ethical guidelines,						
	Ethical Committees and their set up, Animal Ethical issues and compliance.						

- 1. Krogsgaard-Larsen et al. Textbook of Drug Design and Discovery. 4th Edition. CRC Press.
- 2. Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell.
- 3. Nally, J. D. (2006) GMP for Pharmaceuticals. 6th edition. CRC Press
- 4. Brody, T. (2016) Clinical Trials: Study Design, Endpoints and Biomarkers, Drug Safety, and FDA and ICH Guidelines. Academic Press.

Department Name:	Biotechnology					
Program Name:	M.Sc. in Biotechnology					
Program Code:	303					
Semester: Semest Course Name:						
	Microbial Technology					
Course Code:	BIOT-DSE- 308 (For new course keep it blank; else enter the old course code)					
Course Credit:	2					
Marks Allotted: Theore	tical/Practical: 42 Continuing Evaluation: 8					
Course Type (tick the co	prrect alternatives):					
Core						
Department Sp	ecific Elective V					
Generic Elective	2					
Is the course focused or	n employability / entrepreneurship? YES VO					
Is the course focused or	n imparting life skill? YES NO V					
Is the course based on <i>i</i>	Activity ? YES NO 🗸					
Percentage of change in	n syllabus (applicable in case of change in syllabus only)					
Minor (up to 15	5%)					
Moderate (>15	% and up to 50%)					
Major (> 50%)						
Summary of cha	anges					
L						

Date: 18.04.22

Course Name: Microbial Technology

Credits: 2

Course Objectives:

The objectives of this course are to introduce students to developments/ advances made in field of microbial technology for use in human welfare and solving problems of the society.

Student Learning Outcomes:

On completion of this course, students would develop deeper understanding of the microbial technology and its applications.

Unit I Introduction to microbial technology	Microbial technology in human welfare; Isolation and screening of microbes important for industry – advances in methodology and its application; Advanced genome and epigenome editing tools (e.g., engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging tools) for manipulation of useful microbes/ strains and their applications; Strain improvement to increase yield of selected molecules, e.g., antibiotics, enzymes, biofuels.
Unit II Environmental applications of microbial technology	Environmental application of microbes; Ore leaching; Biodegradation - biomass recycle and removal; Bioremediation - toxic waste removal and soil remediation; Global Biogeochemical cycles; Environment sensing (sensor organisms/ biological sensors); International and National guidelines regarding use of genetically modified organisms in environment, food and pharmaceuticals.
Unit III Pharmaceutical applications of microbial technology	Recombinant protein and pharmaceuticals production in microbes – common bottlenecks and issues (technical/operational, commercial and ethical); Attributes required in industrial microbes (Streptomyces sp., Yeast) to be used as efficient cloning and expression hosts (biologicals production); Generating diversity and introduction of desirable properties in industrially important microbes (Streptomyces/Yeast); Microbial cell factories; Downstream processing approaches used in industrial production process (Streptomyces sp., Yeast).
Unit IV Food applications of microbial technology	Application of microbes and microbial processes in food and healthcare industries - food processing and food preservation, antibiotics and enzymes production, microbes in targeted delivery application – drugs and vaccines (bacterial and viral vectors); Non- recombinant ways of introducing desirable properties in Generally recognized as safe (GRAS) microbes to be used in food (e.g., Yeast) - exploiting the existing natural diversity or the artificially introduced diversity through conventional acceptable techniques (mutagenesis, protoplast fusion, breeding, genome shuffling, directed evolution etc.).
Unit V Advances in microbial technology	Microbial genomics for discovery of novel enzymes, drugs/ antibiotics; Limits of microbial genomics with respect to use in human welfare; Metagenomics and metatranscriptomics – their potential, methods to study and applications/use (animal and plant health, environmental clean-up, global

nutrient cycles & global sustainability, understanding evolution), Global
metagenomics initiative - surveys/projects and outcome, metagenomic
library construction and functional screening in suitable hosts - tools and
techniques for discovery/identification of novel enzymes, drugs
(e.g., protease, antibiotic) etc.

- 1. Lee, Y. K. (2013). Microbial Biotechnology: Principles and Applications. Hackensack, NJ: World Scientific.
- 2. Moo-Young, M. (2011). Comprehensive Biotechnology. Amsterdam: Elsevier.
- 3. Nelson, K. E. (2015). Encyclopedia of Metagenomics. Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools. Boston, MA: Springer US.
- 4. The New Science of Metagenomics Revealing the Secrets of Our Microbial Planet. (2007). Washington, D.C.: National Academies Press.
- Journals: (a) Nature, (b) Nature Biotechnology, (c) Applied microbiology and biotechnology, (d) Trends in Biotechnology, (e) Trends in Microbiology, (f) Current opinion in Microbiology, (g) Biotechnology Advances, (h) Genome Research)
- 6. Websites: <u>http://jgi.doe.gov/our-science/</u>

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I Semester II Semester III V Semester IV	
Course Name:	Molecular Virology	
Course Code:	BIOT-DSE- 309 (For new course keep it blank; else enter the old course code)	
Course Credit:	2	
Marks Allotted: Theore	tical/Practical: 42 Continuing Evaluation: 8	
Course Type (tick the co	prrect alternatives):	
Core		
Department Sp	ecific Elective 🗸	
Generic Elective		
Is the course focused or	n employability / entrepreneurship? YES V O	
Is the course focused or	n imparting life skill? YES NO V	
s the course based on Activity ? YES NO V		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	%)	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of cha	anges	
New Course.		

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

18.04.22

Date:

Course Name: Molecular Virology

Credits: 2

Course Objectives:

In this course the students will obtain advanced knowledge of different aspects of virology - from the molecular basis of the virus life cycle to the importance of viruses in human medicine and the use of viruses in biotechnology and cell biology.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Explain the molecular details of the virus life cycle and identify the implications for human disease and treatment including gene therapy
- Explain the biotechnological importance and usage of virurses
- Relate and summarize different virological disciplines in a broader context
- account for the structure and chemical and physical properties of viruses
- account for general mechanisms in conjunction with virus infection of cells (virus adsorption, replication of the genome, synthesis and processing of RNA, gene regulation, protein synthesis, virion assembly and egress) and predict the properties of newly discovered viruses
- account for basic pathogenetic concepts such as tropism, latency, persistence and acute infection, local and systemic infection, incubation period
- account for the variability of viruses and its consequences
- account for pathogenesis and epidemiology in relation to the properties of viruses and the functions

Unit I	Economic losses due to important viruses; Types of plant viruses, DNA						
	Viruses, RNA viruses, satellite viruses, satellite RNA, satellite DNA, viroids,						
	virusoids; Disease symptoms, local and systemic symptoms, necrosis						
	hypoplasia, hyperplasia; Vectors for virus transmission; Cell to cell and						
	systemic movement of viruses plasmodesmata and virus movement.						
Unit II	Genome Organization of DNA viruses; Caulimovirus - eg. Cauliflower mosaic						
	virus, Replication of CaMV, Badnavirus - Rice tungro virus (RTBV);						
	Geminiviridae - Bean golden mosaic virus, B- DNAS of geminiviruses, rolling						
	circle replication, Nanovirus - Banana bunchy top virus						
Unit III	Genome Organization of positive-stranded RNA viruses - Potyoiridae,						
	Potato virusY (PVY), processing of polyprotein, Comoviridae, Citrus triesteza						
	virus; Bromoviridae, Alfalfa mosaic virus; Tubiviridae, Tobacco mosaic vrlis, Replication of TM, Tobacco rattle virus.						
Unit IV	Genome Organization of negative-stranded RNA viruses; Rhabdoviridae,						
	Sonchus yellow net virus; Bunyaviride, Tomato spotted wilt virus;						
	Tenuivirus, Rice stripe virus; Double-stranded RNA viruses, Reoviridae, Rice						
	dvarfvir						
Unit V	Virus detection and diagnosis; Infectivity assays- Sap transmission, insect						
	vector transmission, agroinfection (using Agrobacterium);						

Ultracentrifugation,	electron	microscopy,	serological	methods,	
immunelectrophores	is in gels, di	irect double-an	tibody sandwi	ch method,	
Dot ELISA, Immun	osorbent el	lectron micros	scopy (15EV	Decoration	
technique, Polymerase chain reaction; DNA and oligonucleotide microarray;					
Gene silencing PTGS& TGS, viral suppressors of gene silencing.					

- 1. Ed. CL. Mandahar, Molecular Biology of Plant viruses, Kluwer Academic Publishers, Dordrect, 1999.
- 2. Roger Hull(Ed), Mathews Plant Virology, 4h Edition, Academic Press, SanDiego, 2002
- 3. D.G.A. Walkey (Ed), Applied Plant Virololgy, 2d Edition, Chapman & Hall, London, 1991.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest Course Name:	er I Semester II Semester III V Semester IV Environmental Biotechnology		
Course Code:	BIOT-GE- 310 (For new course keep it blank; else enter the old course code)		
Marks Allotted: Theore	4 etical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co			
Core			
Department Specific Elective			
Generic Elective V			
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused on imparting life skill? YES NO V			
Is the course based on a	Activity ? YES NO V		
Percentage of change in syllabus (applicable in case of change in syllabus only)			
Minor (up to 15%)			
Moderate (>15% and up to 50%)			
Major (> 50%)			
Summary of changes			

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

Date: 18.04.22

Course Name: Environmental Biotechnology

Credits: 4

Course Objectives:

This course aims to introduce fundamentals of Environmental Biotechnology. The course will introduce major groups of microorganisms tools in biotechnology and their most important environmental applications. The environmental applications of biotechnology will be presented in detail and will be supported by examples from the national and international literature.

Student Learning Outcomes:

On completion of course, students will be able to understand use of basic microbiological, molecular and analytical methods, which are extensively used in environmental biotechnology.

Course Syllabus:

nvironment; pollution and its control; pollution indicators;
ent: domestic, industrial, solid and hazardous wastes; strain
odiversity and its conservation; Role of microorganisms in
es; microbial energy metabolism, microbial growth kinetics
chemostat theory, relevant microbiological processes,
<i>.</i>
Fundamentals, methods and strategies of application
bioaugmentation) – examples, bioremediation of metals (Cr,
nuclides (U, Te), organic pollutants (PAHs, PCBs, Pesticides,
logical aspects of bioremediation (in situ, ex situ).
acteria and fungi in bioremediation: White rot fungi vs
ading bacteria: examples, uses and advantages vs
hytoremediation: Fundamentals and description of major
application (phytoaccumulation, phytovolatilization,
vtostabilization).
Bacillus thuringiensis, Baculoviruses, uses, genetic
aspects of safety in their use; Biofungicides: Description of
ns and mechanisms (e.g. Trichoderma, Pseudomonas
iofertilizers: Symbiotic systems between plants –
(nitrogen fixing symbiosis, mycorrhiza fungi symbiosis),
moting rhizobacteria (PGPR) – uses, practical aspects and
cation.
iotechnology and biofuels: biogas; bioethanol; biodiesel;
Description of the industrial processes involved,
and biotechnological interventions for optimization of
obiologically enhanced oil recovery (MEOR); Bioleaching of
tion of bioplastics; Production of biosurfactants:
per production: use of xylanases and white rot fungi.

Suggested Readings:

1. G. M. Evans and J. C. Furlong (2003), Environmental Biotechnology: Theory and Applications, Wiley Publishers.

- 2. B. Ritmann and P. L. McCarty, (2000), Environmental Biotechnology: Principle & Applications, 2nd Ed., McGraw Hill Science.
- 3. Scragg A., (2005) Environmental Biotechnology. Pearson Education Limited.
- 4. J. S. Devinny, M. A. Deshusses and T. S. Webster, (1998), Biofiltration for Air Pollution Control, CRC Press.
- 5. H. J. Rehm and G. Reed, (2001), Biotechnology A Multi-volume Comprehensive Treatise, Vol. 11, 2nd Ed., VCH Publishers Inc.
- 6. H. S. Peavy, D. R. Rowe and G. Tchobanoglous, (2013), Environmental Engineering, McGraw-Hill Inc.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
	er I Semester II Semester III V Semester IV		
Course Name:	Protein Engineering		
Course Code:	BIOT-GE- 311 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	etical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core			
Department Sp	ecific Elective		
Generic Elective	e V		
Is the course focused on employability / entrepreneurship? YES VO			
Is the course focused on imparting life skill? YES NO V			
Is the course based on Activity ? YES NO V			
Percentage of change in	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15%)			
Moderate (>15% and up to 50%)			
Major (> 50%)			
Summary of ch	anges		

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

Date: 18.04.22

Course Name: Protein Engineering

Credits: 4

Course Objectives:

The aim of this course is to introduce methods and strategies commonly used in protein engineering.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Analyse structure and construction of proteins by computer-based methods;
- Describe structure and classification of proteins;
- Analyse purity and stability of proteins and explain how to store them in
- best way;
- Explain how proteins can be used for different industrial and academic purposes such as structure determination, organic synthesis and drug design.

Unit I	Protein engineering – definition, applications; Features or characteristics of
Introduction	proteins that can be engineered (definition and methods of study) – affinity
toprotein	and specificity; Spectroscopic properties; Stability to changes in parameters
engineering	as pH, temperature and amino acid sequence, aggregation propensities, etc.
- 0 0	Protein engineering with unnatural amino acids and its applications.
Unit II	Methods of measuring stability of a protein; Spectroscopic methods to study
Stability of protein	physicochemical properties of proteins: far-UV and near-UV CD;
structure	Fluorescence; UV absorbance; ORD; Hydrodynamic properties-viscosity,
	hydrogen-deuterium exchange; Brief introduction to NMR spectroscopy –
	emphasis on parameters that can be measured/obtained from NMR and
	their interpretation.
Unit III	Forces stabilizing proteins – Van der waals, electrostatic, hydrogen bonding
Applications	and weakly polar interactions, hydrophobic effects; Entropy – enthalpy
	compensation; Experimental methods of protein engineering: directed
	evolution like gene site saturation mutagenesis; Module shuffling; Guided
	protein recombination, etc., Optimization and high throughput screening
	methodologies like GigaMetrix, High throughput microplate screens etc.,
	Application to devices with bacteriorhodopsin as an example; Engineering
	antibody affinity by yeast surface display; Applications to vaccines,
	Peptidomimetics and its use in drug discovery.
Unit IV	Computational approaches to protein engineering: sequence and 3D
Computational	structure analysis, Data mining, Ramachandran map, Mechanism of
approaches	stabilization of proteins from psychrophiles and thermophiles vis-à-vis those
	from mesophiles; Protein design, Directed evolution for protein engineering
	and its potential.
Unit V	Case Studies.
Case studies	

- 1. Edited by T E Creighton, (1997), Protein Structure: a Practical Approach, 2nd Edition, Oxford university press.
- 2. Cleland and Craik, (2006), Protein Engineering, Principles and Practice, Vol 7, Springer Netherlands.
- 3. Mueller and Arndt, Protein Engineering Protocols, 1st Edition, Humana Press.
- 4. Ed. Robertson DE, Noel JP, (2004), Protein Engineering Methods in Enzymology, 388, Elsevier Academic Press.
- 5. J Kyte; (2006), Structure in Protein Chemistry, 2nd Edition, Garland publishers.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I Semester II Semester III ✓ Semester IV	
Course Name:	Molecular Therapeutics	
_		
Course Code:	BIOT-GE- 312 (For new course keep it blank; else enter the old course code)	
Course Credit:	4	
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	prrect alternatives):	
Core		
Department Sp	ecific Elective	
Generic Elective	e √	
Is the course focused or	n employability / entrepreneurship? YES VO	
Is the course focused or	n imparting life skill? YES NO 🗸	
Is the course based on A	Activity ? YES NO 🗸	
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	%)	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of changes		
New Course		
L		

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

Date: 18.04.2

Course Code: BIOT-GE- 312

Course Name: Molecular Therapeutics

Credits: 4

Course Objectives:

This course involves a wide range of new disease therapies such as gene therapy, cellular therapy, Recombinant therapy, immunotherapy, antisense therapy and stem cells therapy.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Demonstrate an in-depth knowledge of recent developments in molecular therapeutics research specifically in the areas of gene therapy, cellular therapy, Recombinant and its role in therapy and immunotherapy.
- Demonstrate an in-depth knowledge of recent developments in Gene their silencing technology.

Unit I	Gene therapy; Intracellular barriers to gene delivery; Overview of inherited
	and therapy; Unit II Retro and adeno virus mediated gene transfer; Liposome
	and nanoparticles acquired mediated diseases gene delivery
Unit II	Cellular stem embryonic cells; therapy; Concept stem cells; Stem of Clinical
	tissue cells: engineering; definition, properties Role of scaffolds; and potency
	Role of stem growth cells; factors; Role embryonic of adult. and adult
	applications; Ethical issues
Unit III	Recombinant therapy; Clinical applications of recombinant technology;
	Erythropoietin; Insulin analogs and its role in diabetes, Recombinant human
	growth hormone, Streptokinase and urokinase in thrombosis, Recombinant
	coagulation factors
Unit IV	Immunotherapy; Monoclonal antibodies and their role in cancer,
	Role of recombinant interferons, Immunostimulants, Immunosupressor in
	organ transplant ,Role of cytokine therapy in cancer, Vaccines: types,
	recombinant vaccines and clinical applications
Unit V	Gene silencing technology; Antisense therapy; siRNA; Tissue and organ
	transplantation; Transgenics and their uses; Ethical issues

Course Syllabus:

- 1. Bernhard Palsson and Sangeeta N Bhatia, Tissue Engineering, 2n Edition, Prentice Hall, 2004.
- 2. Pamela Greenwell, Michelle McCulley, Molecular Therapeutics: 21t century medicine. I Edition, Sringer, 2008.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I Semester II Semester IV 🛛 🗸		
Course Name:	Project Proposal Preparation & Presentation		
Course Code:	BIOT-CP- 401 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core	V		
Department Sp	ecific Elective		
Generic Elective	2		
Is the course focused or	n employability / entrepreneurship? YES V O		
Is the course focused or	n imparting life skill? YES NO 🗸		
Is the course based on A	Activity ? YES NO 🗸		
Percentage of change in	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	5%) V		
Moderate (>15	% and up to 50%)		
Major (> 50%)			
Summary of changes			

Semester Four

Course Code: BIOT-CP- 401

Course Name: Project Proposal Preparation & Presentation

Credits: 4

Course Objectives:

The purpose of this course is to help students organize ideas, material and objectives for their dissertation and to begin development of communication skills and to prepare the students to present their topic of research and explain its importance to their fellow classmates and teachers.

Student Learning Outcomes:

Students should be able to demonstrate the following abilities:

- Formulate a scientific question;
- Present scientific approach to solve the problem;
- Interpret, discuss and communicate scientific results in written form;
- Gain experience in writing a scientific proposal;
- Learn how to present and explain their research findings to the audience effectively.

Project Proposal	Selection of research lab and research topic: Students should first select a
Preparation	lab wherein they would like to pursue their dissertation. The supervisor or senior researchers should be able to help the students to read papers in the areas of interest of the lab and help them select a topic for their project. The topic of the research should be hypothesis driven. Review of literature: Students should engage in systematic and critical review of appropriate and relevant information sources and appropriately apply qualitative and/or quantitative evaluation processes to original data; keeping in mind ethical standards of conduct in the collection and evaluation of data and other resources. Writing Research Proposal: With the help of the senior researchers, students should be able to discuss the research questions, goals, approach, methodology, data collection, etc. Students should be able to construct a logical outline for the project including analysis steps and expected outcomes and prepare a complete proposal in scientific proposal format for dissertation.
Poster Presentation	Students will have to present the topic of their project proposal after few months of their selection of the topic. They should be able to explain the novelty and importance of their research topic.
Oral Presentation	At the end of their project, presentation will have to be given by the students to explain work done by them in detail. Along with summarizing their findings they should also be able to discuss the future expected outcome of their work.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I Semester II Semester IV 🛛 🗸	
Course Name:	Dissertation	
Course Code:	BIOT-CP- 402 (For new course keep it blank; else enter the old course code)	
Course Credit:	4	
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	orrect alternatives):	
Core	\checkmark	
Department Sp	ecific Elective	
Generic Elective	2	
Is the course focused or	n employability / entrepreneurship? YES \vee O	
Is the course focused or	n imparting life skill? YES NO 🗸	
Is the course based on A	Activity ? YES NO 🗸	
Percentage of change in	ر syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	5%) V	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of changes		

Course Code: BIOT-CP- 402

Course Name: Dissertation

Credits: 4

Course Objectives:

The objectives of this course are to prepare the students to adapt to the research environment and understand how projects are executed in a research laboratory. It will also enable students to learn practical aspects of research and train students in the art of analysis and thesis writing.

Student Learning Outcomes:

Students should be able to learn how to select and defend a topic of their research, how to effectively plan, execute, evaluate and discuss their experiments. Students should be able to demonstrate considerable improvement in the following areas:

- In-depth knowledge of the chosen area of research.
- Capability to critically and systematically integrate knowledge to identify issues that must be addressed within framework of specific thesis.
- Competence in research design and planning.
- Capability to create, analyse and critically evaluate different technical solutions.
- Ability to conduct research independently.
- Ability to perform analytical techniques/experimental methods.
- Project management skills.
- Report writing skills.
- Problem solving skills.
- Communication and interpersonal skills.

Planning & performing experiments	Based on the project proposal submitted in earlier semester, students should be able to plan, and engage in, an independent and sustained critical investigation and evaluate a chosen research topic relevant to biological sciences and society. They should be able to systematically identify relevant theory and concepts, relate these to appropriate method- ologies and evidence, apply appropriate techniques and draw appropriate conclusions. Senior researchers should be able to train the students such that they can work inde- pendently and are able to understand the aim of each experiment performed by them. They should also be able to understand the possible outcomes of each experiment.
Thesis writing	At the end of their project, thesis has to be written giving all the details such as aim, methodology, results, discussion and future work related to their project. Students may aim to get their research findings published in a peer- reviewed journal. If the research findings have application-oriented outcomes, the students may file patent application.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I Semester II Semester IV 🛛 🗸		
Course Name:	Research Methodology and Scientific Communication		
Course Code:	BIOT-CT- 403 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core	\checkmark		
Department Sp	ecific Elective		
Generic Elective	2		
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused or	n imparting life skill? YES NO 🗸		
Is the course based on A	Activity ? YES NO 🗸		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	5%) V		
Moderate (>15	% and up to 50%)		
Major (> 50%)	Major (> 50%)		
Summary of cha	anges		

Course Code: BIOT-CT- 403

Course Name: Research Methodology and Scientific Communication Skills

Credits: 4

Course Objectives:

The objectives of this course are to give background on history of science, emphasizing methodologies used to do research, use framework of these methodologies for understanding effective lab practices and scientific communication and appreciate scientific ethics.

Student Learning Outcomes:

Students should be able to:

- Understand history and methodologies of scientific research, applying these to recent published papers;
- Understand and practice scientific reading, writing and presentations;
- Appreciate scientific ethics through case studies.

Unit I	Empirical science; scientific method; manipulative experiments and			
History of science and	controls; deductive and inductive reasoning; descriptive science; reductionist vs holistic biology.			
science	reductionist vs nolistic biology.			
methodologies				
Unit II	Choosing a mentor, lab and research question; maintaining a lab			
Preparation for	notebook.			
research				
Unit III	Concept of effective communication- setting clear goals for			
Process of	communication; determining outcomes and results; initiating			
communication	communication; avoiding breakdowns while communicating; creating			
	value in conversation; barriers to effective communication; non-verbal			
	communication-interpreting non-verbal cues; importance of body			
	language, power of effective listening; recognizing cultural differences;			
	Presentation skills - formal presentation skills; preparing and presenting			
	using over-head projector, PowerPoint; defending interrogation; scientific			
	poster preparation & presentation; participating in group discussions;			
	Computing skills for scientific research - web browsing for information			
	search; search engines and their mechanism of searching; hidden Web and			
	its importance in scientific research; internet as a medium of interaction			
	between scientists; effective email strategy using the right tone and			
	conciseness.			
Unit IV	Technical writing skills - types of reports; layout of a formal report;			
Scientific	scientific writing skills - importance of communicating science; problems			
communication	while writing a scientific document; plagiarism, software for plagiarism;			
	scientific publication writing: elements of a scientific paper including			
	abstract, introduction, materials & methods, results, discussion,			
	references; drafting titles and framing abstracts; publishing scientific			
	papers - peer review process and problems, recent developments such as			

open access and non- blind review; plagiarism; characteristics of effective
technical communication; scientific presentations; ethical issues; scientific
misconduct.

- 1. Valiela, I. (2001). Doing Science: Design, Analysis, and Communication of Scientific Research. Oxford: Oxford University Press.
- 2. On Being a Scientist: a Guide to Responsible Conduct in Research. (2009). Washington, D.C.: National Academies Press.
- 3. Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist, 78 (Nov-Dec 1990), 550-558.
- 4. Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Delhi: Macmillan India.
- 5. Movie: Naturally Obsessed, The Making of a Scientist.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I Semester II Semester IV V		
Course Name:	Critical Analysis of Classical Papers		
Course Code:	BIOT-CP- 404 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core	V		
Department Sp	ecific Elective		
Generic Elective	2		
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused or	n imparting life skill? YES NO 🗸		
Is the course based on A	Activity ? YES NO 🗸		
Percentage of change in	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	5%) V		
Moderate (>15	% and up to 50%)		
Major (> 50%)			
Summary of changes			

Course Code: BIOT-CP- 404

Course Name: Critical Analysis of Classical Papers

Credits: 4

Course Objectives:

The objectives of this course are to familiarize students with classic literature to make them appreciate how ground- breaking discoveries were made without, necessarily, use of high-end technologies.

Student Learning Outcomes:

Students should be able to train in the exercise of hypothesis building and methods of addressing the hypothesis with readily available technology.

Course Syllabus:

How does the Course Module work? Students may be divided in groups and each group may be responsible for one classical paper. Each week there may be a 1.5-hour presentation cum discussion for each of the papers. At the end of the semester each student will be asked to write a mini-review (2-3 pages long) on any one classical paper, other than the one he/she presented/discussed.

A list of sixteen classic papers and some suggested reference materials:

	1	Studies on the chemical nature of the substance inducing
Molecular Biology	1.	-
		transformation of Pneumococcal types: Induction of transformation
		by a desoxyribonucleic acid fraction isolated from Pneumococcus
		type III.
		Avery OT, Macleod CM, McCarty M.; J Exp Med. 1944 Feb
		1;79(2):137-58. Note: This paper demonstrates that DNA is the
		transforming Principle originally described by Fredrick Griffith.
	2.	Independent functions of viral protein and nucleic acid in growth of
		bacteriophage Hershey AD and Chase M.; J Gen Physiol. 1952
		May;36(1):39-56.
		Note: Note: This paper demonstrates that DNA, and not protein,
		component of phages enter bacterial cells.
	3	Molecular structure of nucleic acids; a structure for deoxyribose
	5.	nucleic acid Watson JD and Crick FH; Nature. 1953 Apr
		25;171(4356):737-8
		Note: In this one page paper Watson and Crick first described the
		structure of DNA double helix
		Study help - Watson_Crick_Nature_1953_annotated
	4.	Transposable mating type genes in Saccharomyces cerevisiae
		James Hicks, Jeffrey N. Strathern & Amar J.S. Klar; Nature 282, 478-
		483,1979 Note: This paper provided evidence for 'cassette
		hypothesis' of yeast mating type switches i.e. interconversion of
		mating types in yeast (S. cerevisiae) occurs by DNA rearrangement.
	5.	Messelson & Stahl experiment demonstrating semi-conservative
		replication of DNA. Meselson M and Stahl FW.; Proc Natl Acad Sci U
		S A. 1958 Jul 15;44(7):671-82 Note: The experiment demonstrating
		semi-conservative mode of DNA replication is referred to as "the
		most beautiful experiment in biology"
	6.	In vivo alteration of telomere sequences and senescence caused by
	5.	

	mutated Tetrahymena telomerase RNAs
	Guo-Liang Yu, John D. Bradley, Laura D. Attardi & Elizabeth H.
	Blackburn; Nature 344, 126-132, 1990
	Note: This paper demonstrates that the telomerase contains the
	template for telomere synthesis
Cell Biology	1. A protein-conducting channel in the endoplasmic reticulum Simon
Cell Diology	SM AND Blobel G.; Cell. 1991 May 3;65(3):371-80
	Note: This paper demonstrates the existence of a protein
	conducting channel Study help - A brief history of Signal Hypothesis
	2. Identification of 23 complementation groups required for post-
	translational events in the yeast secretory pathway
	Novick P, Field C, Schekman R.; Cell. 1980 Aug;21(1):205-15
	Note: In this groundbreaking paper Randy Schekman's group used a
	mutagenesis screen for fast sedimenting yeast mutants to identify
	genes involved in cell secretion
	3. A yeast mutant defective at an early stage in import of secretory
	protein precursors into the endoplasmic reticulum
	Deshaies RJ and Schekman R.; J Cell Biol. 1987 Aug;105(2):633-45
	Note: Using another yeast mutation screen Schekman lab identifies
	Sec61, a component of ER protein Conducting Channel (PCC)
	Suggested reference paper - A biochemical assay for identification
	of PCC.
	4. Reconstitution of the Transport of Protein between Successive
	Compartments of the Golgi
	Balch WE, Dunphy WG, Braell WA, Rothman JE.; Cell. 1984 Dec;39(2
	Pt 1):405-16 Note: This paper describes setting up of an in vitro
	reconstituted system for transport between golgi stacks which
	eventually paved the way for identification of most of the
	molecular players involved in these steps including NSF, SNAP etc.
	5. A complete immunoglobulin gene is created by somatic
	recombination
	Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S.; Cell. 1978
	Sep;15(1):1-14 Note: This study demonstrates DNA level molecular
	details of somatic rearrangement of immunoglobulin gene
	sequences leading to the generation of functionally competent
	antibody generating gene following recombination.
	6. A novel multigene family may encode odorant receptors: a
	molecular basis for odor recognition
	Buck L and Axel R; Cell. 1991 Apr 5;65(1):175-87
	Note: This paper suggests that different chemical odorants
	associate with different cell-specific expression of a
	transmembrane receptor in Drosophila olfactory epithelium where
	a large family of odorat receptors is expressed.
	7. Kinesin walks hand-over-hand
	Yildiz A, Tomishige M, Vale RD, Selvin PR.; Science. 2004 Jan
	30;303(5658):676-8 Note: This paper shows that kinesin motor
	works as a two-headed dimeric motor walking hand-over-hand
	rather than like an inchworm on microtubule tract using the energy
Development - I	of ATP hydrolysis.
Developmental	 Mutations affecting segment number and polarity in Drosophila Christiane Nusslein-Volhard and Eric Weischaus; Nature 287, 795-
Biology/ Genetics	Christiane Nussien-Volliaru anu erit Welstildus; Nature 287, 795-

	801, 1980 Note: This single mutagenesis screen identified majority
	of the developmentally important genes not only in flies but in
	other metazoans as well.
2.	Information for the dorsalventral pattern of the Drosophila
	embryo is stored as maternal mRNA
	Anderson KV and Nüsslein-Volhard C; Nature. 1984 Sep 20-
	26;311(5983):223-7 Note: This landmark paper demonstrated that
	early dorsal-ventral pattern information is stored as maternal
	mRNA in flies and devised the method of identifying genes
	encoding such genes
3	Hedgehog signalling in the mouse requires intraflagellar transport
	proteins Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L,
	Anderson KV.; Nature. 2003 Nov 6;426(6962):83-7
	Note: One of the architects of original fly mutagenesis screens
	conducted a mouse mutagenes screen which identified a gene Kif3a
	as a major component of hedgehog signaling pathway. Eventually
	this discovery revolutionizes our understanding of mechanisms of
	action of signaling pathways by demonstrating central role of
	cillia in it.
	Suggested Reference paper - Design and execution of a embryonic
	lethal mutation screen in mouse.

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I Semester II Semester IV 🛛 🗸	
Course Name:	Emerging Technologies	
Г		
Course Code:	BIOT-DSE- 405 (For new course keep it blank; else enter the old course code)	
Course Credit:	4	
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	prrect alternatives):	
Core		
Department Sp	ecific Elective √	
Generic Elective	9	
Is the course focused or	n employability / entrepreneurship? YES VIO	
Is the course focused on imparting life skill? YES NO V		
Is the course based on a	Activity ? YES NO 🗸	
Percentage of change in	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	5%) V	
Moderate (>15% and up to 50%)		
Major (> 50%)		
Summary of cha	anges	
Minor change	25.	

Course Code: BIOT-DSE- 405

Course Name: Emerging Technologies

Credits: 4

Course Objectives:

This course is broad-based in nature encompassing several new technologies that current experimental researchers are employing to probe complex system biology questions in life-sciences. The objectives of this course are to teach basics of the new principles to students so as to appreciate current-day research tool-kit better.

Student Learning Outcomes:

Students should be to learn history, theoretical basis and basic understanding of latest technologies in area of biotechnology. They should also be able to learn about various applications of these technologies. The students may also learn one application in depth through an assignment and/or seminar.

11.11	Desite Material and the Material Science of Antonio Science and Antonio
Unit I	Basic Microscopy: Light Microscopy: lenses and microscopes, resolution:
Optical microscopy	Rayleigh's Approach, Darkfield; Phase Contrast; Differential Interference
methods	Contrast; fluorescence and fluorescence microscopy: what is fluorescence,
	what makes a molecule fluorescent, fluorescence microscope; optical
	arrangement, light source; filter sets: excitation filter, dichroic mirror, and
	barrier, optical layout for image capture; CCD cameras; back illumination,
	binning; recording color; three CCD elements with dichroic beamsplitters,
	boosting the signal.
	Advanced Microscopy: Confocal microscope: scanning optical microscope,
	confocal principle, resolution and point spread function, light source: gas
	lasers & solid-state, primary beamsplitter; beam scanning, pinhole and signal
	channel configurations, detectors; pixels and voxels; contrast, spatial
	sampling: temporal sampling: signal-to- noise ratio, multichannel images.
	nonlinear microscopy: multiphoton microscopy; principles of two-photon
	fluorescence, advantages of two-photon excitation, tandem scanning
	(spinning disk) microscopes, deconvolving confocal images; image processing,
	three-dimensional reconstruction; advanced fluorescence techniques: FLIM,
	FRET, and FCS, Fluorescence Lifetime, Fluorescence Resonant Energy Transfer
	(FRET), Fluorescence Correlation Spectroscopy (FCS), Evanescent Wave
	Microscopy; Near-Field and Evanescent Waves, Total Internal Reflection
	Microscopy; Near-Field Microscopy; Beyond the Diffraction Limit: Stimulated
	Emission Depletion (STED), Super-Resolution Summary, Super-Resolution
	Imaging with Stochastic Optical Reconstruction Microscopy (STORM) and
	Photoactivated Localization Microscopy (PALM).
Unit II	Ionization techniques; mass analyzers/overview MS; FT-ICR and Orbitrap,
Mass spectroscopy	fragmentation of peptides; proteomics, nano LC-MS; Phospho proteomics;
	interaction proteomics, mass spectroscopy in structural biology; imaging
	mass spectrometry.
Unit III	High throughput screens in cellular systems, target identification, validation
Systems biology	of experimental methods to generate the omics data, bioinformatics
Systems biology	analyses, mathematical modeling and designing testable predictions.

Unit IV	X-ray diffraction methods, solution & solid-state NMR, cryo-electron
Structural biology	microscopy, small- angle X-ray scattering, Atomic force microscopy.
Unit V	History of its discovery, elucidation of the mechanism including introduction
CRISPR-CAS	to all the molecular players, development of applications for in vivo genome
	engineering for genetic studies, promise of the technology as a next
	generation therapeutic method.
Unit VI	History of its discovery, elucidation of the mechanism including introduction
Nanobodies	to all the molecular players, development of applications for in vivo genome
	engineering for genetic studies, promise of the technology as a next
	generation therapeutic method.

- 1. Campbell, I. D. (2012). Biophysical Techniques. Oxford: Oxford University Press.
- 2. Serdyuk, I. N., Zaccai, N. R., & Zaccai, G. (2007). Methods in Molecular Biophysics: Structure, Dynamics, Function. Cambridge: Cambridge University Press.
- 3. Phillips, R., Kondev, J., & Theriot, J. (2009). Physical Biology of the Cell. New York: Garland Science.
- 4. Nelson, P. C., Radosavljević, M., & Bromberg, S. (2004). Biological Physics: Energy, Information, Life. New York: W.H. Freeman.
- Huang, B., Bates, M., & Zhuang, X. (2009). Super-Resolution Fluorescence Microscopy. Annual Review of Biochemistry, 78(1), 993-1016. doi:10.1146/annurev. biochem.77.061906.092014.
- Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., & Oost, J. V. (2016). Diverse Evolutionary Roots and Mechanistic Variations of the CRISPR-Cas Systems. Science, 353(6299). doi:10.1126/science.aad5147.
- 7. Lander, E. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. doi:10.1016/j. cell.2015.12.041.
- 8. Ledford, H. (2016). The Unsung Heroes of CRISPR. Nature, 535(7612), 342-344. doi:10.1038/535342a.
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. doi:10.1126/science.1225829.
- Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E. B., Hammers, R. (1993). Naturally Occurring Antibodies Devoid of Light Chains. Nature, 363(6428), 446-448. doi:10.1038/363446a0.
- Sidhu, S. S., & Koide, S. (2007). Phage Display for Engineering and Analyzing Protein Interaction Interfaces. Current Opinion in Structural Biology, 17(4), 481-487. doi:10.1016/j.sbi.2007.08.007.
- Steyaert, J., & Kobilka, B. K. (2011). Nanobody Stabilization of G Protein-Coupled Receptor Conformational States. Current Opinion in Structural Biology, 21(4), 567-572. doi:10.1016/j.sbi.2011.06.011.
- Vincke, C., & Muyldermans, S. (2012). Introduction to Heavy Chain Antibodies and Derived Nanobodies. Single Domain Antibodies, 15-26. doi:10.1007/978-1-61779-968-6_2.
- Verheesen, P., & Laeremans, T. (2012). Selection by Phage Display of Single Domain Antibodies Specific to Antigens in their Native Conformation. Single Domain Antibodies, 81-104. doi:10.1007/978-1-61779-968-6_6.

- Li, J., Xia, L., Su, Y., Liu, H., Xia, X., Lu, Q. Reheman, K. (2012). Molecular Imprint of Enzyme Active Site by Camel Nanobodies. Journal of Biological Chemistry J. Biol. Chem., 287(17), 13713-13721. doi:10.1074/jbc.m111.336370.
- Sohier, J., Laurent, C., Chevigné, A., Pardon, E., Srinivasan, V., Wernery, U. Galleni, M. (2013). Allosteric Inhibition of VIM Metallo-β-Lactamases by a Camelid Nanobody. Biochemical Journal, 450(3), 477-486. doi:10.1042/bj20121305.
- 17. Chakravarty, R., Goel, S., & Cai, W. (2014). Nanobody: The "Magic Bullet" for Molecular Imaging? Theranostics, 4(4), 386-398. doi:10.7150/thno.8006.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
	565		
Semester: Semest	er I Semester II Semester IV V		
Course Name:	Cancer Genetics		
Course Code:	BIOT-DSE-406 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core			
Department Sp	ecific Elective 🗸		
Generic Elective	2		
Is the course focused or	n employability / entrepreneurship? YES V O		
Is the course focused or	n imparting life skill? YES NO 🗸		
Is the course based on A	Is the course based on Activity ? YES NO V		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	5%)		
Moderate (>15	% and up to 50%)		
Major (> 50%)			
Summary of changes			

Course Code: BIOT-DSE-406

Course Name: Cancer Genetics

Credits: 4

Course Objectives:

The objectives of this course are to build fundamental knowledge of cancer genetics and genomics. The course shall make the students aware of the genes and pathways that are mutated in various cancer types, mechanisms leading to cancer mutations and cancer development, current genetic and genomic methods used to study and to diagnose cancer, and how genetics and genomics are informing cancer treatment.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Explain the basic pathways and genes that lead to the development of cancer.
- Describe the various factors and complexity of genetic mutations in cancer.
- Be able to interpret genomic data and graphs relating to cancer mutations and cancer biology.

Course Syllabus:

Unit I	Introduction: Types and general characteristics of tumours; Chromosomal aberrations in neoplasia; Cell cycle check point and cancer
Unit II	Cell transformation and tumorigenesis: Oncogenes; Tumour suppressor genes; DNA repair genes and genetic instability; Epigenetic modification, telomerase activity, centrosome malfunction; genetic heterogenecity and clonal evolution
Unit III	Familial cancers: Retinoblastoma, Wilms' tumour, Li-Fraumeni syndrome, colorectal cancer, breast cancer; Genetic predisposition to sporadic cancer
Unit IV	Tumour progression: angiogenesis and metastasis; Tumour specific markers
Unit V	Lancer and environment: physical, chemical and biological carcinogens; Cancer risk assessment, gene therapy and counseling

- 1. Aberts et al, The Science of Genetics, Saunders, 1999.
- 2. Alberts et al., Molecular Biology of the Cell, Garland 2008.
- 3. Benjamin, Genetics: A Conceptual Approach, 3d Edition, Freeman, 2007
- 4. Berg and Singer, Genes and Genome, 1998,
- 5. Black, Microbiology: Principlesand Explorations, 6h Edition Wiley, 2004.
- 6. Cowell, Molecular Genetics of Cancer, 2nd Revised Edition, Bios, 2001

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I Semester II Semester IV V	
Course Name:	Clinical Trials & Bioethics	
Course Code:	BIOT-GE- 407 (For new course keep it blank; else enter the old course code)	
Course Credit:	4	
Marks Allotted: Theore	etical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	prrect alternatives):	
Core		
Department Sp	ecific Elective	
Generic Elective	e V	
Is the course focused of	n employability / entrepreneurship? YES V O	
Is the course focused or	n imparting life skill? YES NO 🗸	
Is the course based on a	Activity ? YES NO 🗸	
Percentage of change in	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15	5%)	
Moderate (>15	% and up to 50%)	
Major (> 50%)		
Summary of changes		

Course Code: BIOT-GE- 407

Course Name: Clinical Trials & Bioethics

Credits: 4

Course Objectives:

The course introduces students to some of the key ethical, legal, and policy issues that investigators encounter as they conduct clinical research.

Student Learning Outcomes:

On completion of this course, students should be able to:

- relationship between science and ethics in clinical research.
- Recognize the ethical aspects of the design and conduct of clinical research that require explicit assessment and justification.
- Understand key regulations that govern clinical research.

Unit I	Fundamentale of clinical triale, Dasis statistics for clinical trials. Clinical trials
Unit I	Fundamentals of clinical trials; Basic statistics for clinical trials; Clinical trials
	in practice; Reporting and reviewing clinical trials; Legislation and good
	clinical practice overview of the European directives and legislation
	governing clinical on 21st century; International perspectives; Principles of
	the International Committee Harmonisation trials in the (ICH)-GCP.
Unit II	Drug development and trail planning- pre study requirements for clinical
	trials; Regulatory approval for clinical trials; Consort statement; Trials
	responsibilities and protocol- roles and responsibilities of investigations,
	sponsor and others; Requirements of clinical trials protocols; Legislative
	requirements for investigational medicinal products.
Unit III	Project management in clinical Research trials – principles of project
	management; Application in clinical trial management; Risk management;
	Research ethics and Bioethics-Principles of research ethics; Ethical issues in
	clinical trials; Use of human in scientific experiments; Ethical committee
	system including a historical overview; the informed consent; Introduction
	to ethical codes and conduct; Introduction to animal ethics; Animal right
	and use of animals in the advancement of medical technology; Introduction
	to laws and regulation regarding use of animals in research.
Unit IV	Consent and data protection- the principles of informed consent; Consent
	processes; Data protection; Legislation and its application; Data
	management - Introduction to trial master files processes; and essential
	Data documents; Data management.
Unit V	Quality assurance and governance- quality control in clinical trials;
	Monitoring and audit; Inspection ; Pharmacovigilance; Research
	governance; Trials closure and pitfalls-trials closure; Reporting and legal
	requirements; Common pitfalls in clinical trials management.

- 1. Basic and Clinical Pharmacology, Prentice hall, International, Katzung, B.G
- 2. Clinical pharmacokinetics, Pub. Springer Verlab, Dr. D.R Krishna, V. Klotz
- 3. Clinical Pharmacy and therapeutics Herfindal E T and Hirschman JL, Williams and Wilkins,
- 4. Methodology of Clinical Drug Trials, 2nd Edition. Spriet A., Dupin-Spriet T., Simon P. Publisher: Karger.

Department Name:	Biotechnology		
Program Name:	M.Sc. in Biotechnology		
Program Code:	303		
Semester: Semest	er I Semester II Semester IV V		
Course Name:	Vaccines		
_			
Course Code:	BIOT-GE- 408 (For new course keep it blank; else enter the old course code)		
Course Credit:	4		
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25		
Course Type (tick the co	prrect alternatives):		
Core			
Department Sp	ecific Elective		
Generic Elective	e V		
Is the course focused or	n employability / entrepreneurship? YES VO		
Is the course focused or	n imparting life skill? YES NO V		
Is the course based on A	Is the course based on Activity ? YES NO $$		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)		
Minor (up to 15	5%)		
Moderate (>15	% and up to 50%)		
Major (> 50%)			
Summary of changes			

PG BOS Meeting Reference Number:

F.71/288/FCS/2022

Date: 18.04.22

Course Code: BIOT-GE- 408

Course Name: Vaccines

Course Objectives:

This course will provide students with an overview of vaccines for viral and bacterial diseases. An introduction to vaccine development will be given including the history of vaccines.

Student Learning Outcomes:

On completion of this course, students should be able to:

- Understand the process of the function and development of vaccines.
- Know the use of adjuvants in vaccines.
- Understand differences in vaccines in terms of their production and their modes of prevention

Course Syllabus:

Unit I	Innate Immunity; Activation of the Innate Immunity through TLR mediated signaling; Adaptive Immunity; T and B cell in adaptive immunity; Immunity response in infection; Protective immune response in bacterial, Viral and parasitic infections, Correlates of protection
Unit II	Vaccination and imnmune response; Appropriate and inappropriate immune response during infection: CD4+ and CD8+ memory T cells; Memory B cells; Generation and Maintenance memory T and B cells; Dendritic cells in immune response.
Unit III	Adjuvants in Vaccination; Induction of Th1 and Th2 responses and by cytokines; using appropriate adjuvants; Microbial, Liposomal and Microparticles as adjuvant; Chemokines and cytokines; Role of soluble mediators in vaccination; Oral immunization and mucosal Immunity
Unit IV	Conventional vaccines; Bacterial vaccines; Live attenuated and inactivated vaccine; Subunit Vaccines and Toxoids; Peptide Vaccine
Unit V	New Vaccine Technologies; Rationally designed Vaccines; DNA Vaccination; Mucosal vaccination; New approaches for vaccine delivery; Engineering virus vectors for vaccination; Vaccines for specific targets Tuberculosis Vaccine; Malaria Vaccine; HIV vaccine

- 1. Edited by Stefan H.E. Kaufmann, Novel Vaccination Strategies, Wiley-VCH Verlag GmbH& Co. KgaA,2004 or later edition.
- 2. Topley && Wilson's, Microbiology and Microbial Infections Immunology Edited by Stefan H.E. Kaufmann and Michael W Steward Holder Arnold, ASM Press, 2005 or later edition.
- Edition Charles A Janeway. Jr, Paul Travers, Mark Walport and Mark] Shlomchik, Immuno Biology. The Immune system in health and Disease, 6th Edition, Garland Science, New York, 2005 or later edition.

- 4. Annual Review of Immunology: Relevant issues
- 5. Annual Review of Microbiology: Relevant issues

Department Name:	Biotechnology	
Program Name:	M.Sc. in Biotechnology	
Program Code:	303	
Semester: Semest	er I Semester II Semester IV V	
Course Name:		
	Nanobiotechnology	
Course Code:	BIOT-GE- 409 (For new course keep it blank; else enter the old course code)	
Course Credit:	4	
Marks Allotted: Theore	tical/Practical: 75 Continuing Evaluation: 25	
Course Type (tick the co	prrect alternatives):	
Core		
Department Spe	ecific Elective	
Generic Elective	e V	
Is the course focused or	n employability / entrepreneurship? YES V O	
Is the course focused on imparting life skill? YES NO V		
Is the course based on Activity ? YES NO V		
Percentage of change ir	n syllabus (applicable in case of change in syllabus only)	
Minor (up to 15%)		
Moderate (>15% and up to 50%)		
Major (> 50%)		
Summary of changes		
New Course		

Date: 18.04.22

Course Code: BIOT-GE- 409

Course Name: Nanobiotechnology

Credits: 4

Course Objectives:

The course aims at providing a general and broad introduction to multi-disciplinary field of nanotechnology. It will familiarize students with the combination of the top-down approach of microelectronics and micromechanics with the bottom-up approach of chemistry/biochemistry; a development that is creating new and exciting cross-disciplinary research fields and technologies. The course will also give an insight into complete systems where nanotechnology can be used to improve our everyday life.

Student Learning Outcomes:

On successful completion of this course, students should be able to describe basic science behind the properties of materials at nanometer scale, and the principles behind advanced experimental and computational techniques for studying nanomaterials.

Unit I Introduction to nanobiotechnology	Introduction to Nanobiotechnology; Concepts, historical perspective; Different formats of nanomaterials and applications with example for specific cases; Cellular Nanostructures; Nanopores; Biomolecular motors; Bio-inspired Nanostructures, Synthesis and characterization of different nanomaterials.
Unit II Nano-films	Thin films; Colloidal nanostructures; Self Assembly, Nanovesicles; Nanospheres; Nanocapsules and their characterisation.
Unit III Nanoparticles	Nanoparticles for drug delivery, concepts, optimization of nanoparticle properties for suitability of administration through various routes of delivery, advantages, strategies for cellular internalization and long circulation, strategies for enhanced permeation through various anatomical barriers.
Unit IV Applications of nanoparticles	Nanoparticles for diagnostics and imaging (theranostics); concepts of smart stimuli responsive nanoparticles, implications in cancer therapy, nanodevices for biosensor development.
Unit V Nanomaterials	Nanomaterials for catalysis, development and characterization of nanobiocatalysts, application of Nano scaffolds in synthesis, applications of nanobiocatalysis in the production of drugs and drug intermediates.
Unit VI Nano toxicity	Introduction to Safety of nanomaterials, Basics of nanotoxicity, Models and assays for Nanotoxicity assessment; Fate of nanomaterials in different stratas of environment; Ecotoxicity models and assays; Life Cycle Assessment, containment.

Suggested Readings:

- 1. GeroDecher, Joseph B. Schlenoff, (2003); Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley-VCH Verlag GmbH & Co. KGaA
- 2. David S. Goodsell, (2004); Bionanotechnology: Lessons from Nature; Wiley-Liss
- 3. Neelina H. Malsch (2005), Biomedical Nanotechnology, CRC Press
- 4. Greg T. Hermanson, (2013); Bioconjugate Techniques, (3rd Edition); Elsevier
- 5. Recent review papers in the area of Nanomedicine.
