M.Sc Semester –III

Assignment

Subject- Mathematics

Course – Discrete Mathematics

Subject Course No.-DEMATH3OLEC4

Total Marks-25

<u>Group-A</u>

Answer any one of the following questions (15 marks)

 (a) Using principle of inclusion and exclusion count the number of permutations of {1,2,, n} without fixed points.

(b) Check whether the statement is true or false with proper justification: The number of spanning tress of the complete graph with n vertices is n^{n-2} .

(c) Let G be a graph with n vertices. Prove that the following statements are equivalent:

(i) G is tree.

- (ii) G is connected and has n-1 edges.
- (iii) Any two vertices of G are connected by exactly one path.
- (a) What is the generating function for a sequence of numbers
 {a₀, a₁, ..., a_n, ... }? Use it compute the number of n-digit quarternary
 sequences that have an even numbers of 1's.

(b) Determine the coefficient of $x^5y^{10}z^5w^5$ in $(x - 7y + 3z - w)^{23}$.

(c) What is pigeonhole principle? The integers from 1 to 10 are randomly distributed around a circle. Using pigeonhole principle, prove that there must be three-neighbours whose sum is at least 17.

<u>Group-B</u>

Answer any one of the following questions (10marks)

(a) Let G(V, E) be a simple planer graph with V = {1,2,, n}. Prove that min{d(i) | i = 1, 2, ..., n} ≤ 5, where d(i) is the degree of vertex i.
 (b) Let G(V, E) be a simple graph and contains a vertex of degree 3. Verify: G is Eulerian.

(c) Let G(V, E) be a simple graph with n vertices. Prove that G has at least two vertices with same degree.

2. (a) Define a planer graph, show that K₅ is a non-planer.
(b) Using the generating function, solve the difference equation y_{n+2} - y_{n+1} - 6y_n = 0, y₁ = 1, y₀ = 2.