M.Sc Semester –III

Assignment

Subject- Mathematics

Course – Functional Analysis

Subject Course No.-DEMATH3CORE2

Total Marks-25

Group-A

Answer any one of the following questions (15 marks)

(a) If z is any fixed element of an inner product space X, show that f(x) =< x, z > defines a bounded linear functional f on X, of norm ||z||.

(b) Show that dual space of l^1 is l^∞ .

2. State and prove the open mapping Theorem and then deduce the closed graph Theorem from it.

<u>Group-B</u>

Answer any one of the following questions (10marks)

- 1. Let $\{x_n\}$ be a sequence in a normed space *X*. Then prove that
 - (i) Strong convergence implies weak convergence with same limit.
 - (ii) The converse of (i) is not generally true.
 - (iii) If dim $X < \infty$, then weak convergence implies strong convergence
- 2. Suppose $T: \mathcal{D}(T) \to Y$ be a bounded linear operator, where $\mathcal{D}(T)$ lies in normed space X and Y is Banach space. Then prove that T has an extension $\check{T}:\overline{\mathcal{D}(T)} \to Y$ where \check{T} is a bounded linear operator of the form $\|\check{T}\| = \|T\|$.