M.Sc Semester –III

Assignment

Subject- Mathematics

Course –Linear Algebra

Subject Course No.-DEMATH3CORE1

Total Marks-25

Group-A

Answer any one of the following questions (15 marks)

- 1. Define Symmetric Bilinear form. Let *V* be a finite dimensional vector space over a field *F* not of characteristic two. Then prove that every symmetric bilinear form on *V* is diagonalizable.
- 2. (a) Let V be finite dimensional vector space and $T: V \rightarrow V$ be linear and V = R(T) + N(T). Then prove that $V = R(T) \oplus N(T)$. Give an example to show that above cannot be proved without assuming that V is finite-dimensional.

(b) Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W to W^{\perp} , then $T = T^{\star}$.

<u>Group-B</u>

Answer any one of the following questions (10 marks)

- 1. Let V be a vector space and $T: V \to V$ be a linear transformation. Prove that if the minimal polynomial of T is of the form $p(t) = (\varphi(t))^m$, then there exists a rational canonical basis for T.
- 2. Find the Jordan canonical form J and a Jordan canonical basis β of the linear operator T on $P_3(\mathbb{R})$ defined by $T(f(x)) = f''(x) + 2f(x), \forall f(x) \in P_3(\mathbb{R})$.