M.Sc Semester -III

Assignment

Subject- Mathematics

Course -Linear Algebra

Subject Course No.-DEMATH3CORE1

Total Marks-25

Group-A

Answer any one of the following questions (15 marks)

1. Define Symmetric Bilinear form. Let V be a finite dimensional vector space over a field F not of characteristic two. Then prove that every symmetric bilinear form on V is diagonalizable.
2. (a) Let V be finite dimensional vector space and $T: V \rightarrow V$ be linear and $V=R(T)+N(T)$. Then prove that $V=R(T) \oplus N(T)$. Give an example to show that above cannot be proved without assuming that V is finitedimensional.
(b) Prove that if $V=W \oplus W^{\perp}$ and T is the projection on W to W^{\perp}, then $T=T^{\star}$.

Group-B

Answer any one of the following questions (10 marks)

1. Let V be a vector space and $T: V \rightarrow V$ be a linear transformation. Prove that if the minimal polynomial of T is of the form $p(t)=(\varphi(t))^{m}$, then there exists a rational canonical basis for T.
2. Find the Jordan canonical form J and a Jordan canonical basis β of the linear operator T on $P_{3}(\mathbb{R})$ defined by $T(f(x))=f^{\prime \prime}(x)+2 f(x), \forall f(x) \in$ $P_{3}(\mathbb{R})$.
