M.A Semester –II

Assignment

Subject- Mathematics

Course- Complex Analysis II

Subject Course No.-DEMATH2ELEC5

Total Marks-25

Group-A

Answer any one of the following questions (15 marks)

- 1. Let f be an entire function of finite order λ , then prove that f has finite genus $\mu \leq \lambda$. Furthermore, if λ is not an integer, then show that f has infinitely many zeros.
- 2. (a) Define Weierstrass elementary factor $E_p(z)$ for p=0,1,2,.... Show that if $|z| \le 1$ and $p \ge 0$ then $|1 E_p(z)| \le |z|^{p+1}$.
 - (b) Prove that a harmonic function is an open map.

<u>Group-B</u>

Answer any one of the following questions (10marks)

- 1. Suppose that $a_k \ge 0$ for all $k \in \mathbb{N}$. Then prove that the series $\sum_{k=1}^{\infty} a_k$ converges absolutely if and only if the series $\sum_{k=1}^{\infty} Log(1 + a_k)$ converges absolutely.
- Determine whether the following statement is true or false. Justify your answer with a proof or a counterexample.
 For any two entire functions f and g, λ(f + g) = max{λ(f), λ(g)} whenever λ(f) ≠ λ(g).