M.A Semester –II

Assignment

Subject- Mathematics

Course – Theory of Rings and Modules

Subject Course No.-DEMATH2ELEC4

Total Marks-25

Group-A

Answer any one of the following questions (15 marks)

- 1. State and prove five lemma in Module theory.
- 2. Let E, E' be modules and assume that E' is free. Let $f: E \to E'$ be a surjective homomorphism. Then show that there exists a free submodule F of E such that the restriction of f to F induces an isomorphism of F to E' and also $E = F \bigoplus ker f$.

<u>Group-B</u>

Answer any one of the following questions (10marks)

- 1. Prove that a commutative ring *R* with 1 is Noetherian if and only if every prime ideal is finitely generated.
- Let *M* be a finitely generated free module over *R*, a *PID* and let *X* = {*e*₁, *e*₂, ..., *e*_n} be a basis of *M*. Show that if *N* a submodule of *M* then *N* is also free and has rank at most n elements.