M.A Semester –II Assignment Subject- Mathematics Course –Point set Topology Subject Course No.-DEMATH2CORE2 Total Marks-25

Group-A

Answer any one of the following questions (15 marks)

- 1. Let X be a topological space. Then prove that following are equivalent
 - (1) X is compact space.
 - (2) Every filter has a cluster point.
 - (3) Every filter has a convergent sub-filter.
- Define a metrizable space. If A is an open covering of a metrizable space X, then prove that there is an open covering C of X refining A that is countably locally finite.

Group-B

Answer any one of the following questions (10marks)

1. Let $f: X \to Y$ such that Y be a compact Hausdorff space. Prove that f is continuous if and only if the graph of f,

$$G_f = \{x \times f(x) | x \in X\},\$$

is closed in $X \times Y$.

2. Define Paracompact space. Prove that every Paracompact Hausdorff space X is T_4 .