Assignment

Subject-Mathematics

Semester I

Course-Analysis of Several Variables

Paper Code-DEMATH1SCORE3

Total Marks-25

Group – A

Answer **any one** question from the following questions (15 *marks*)

1. Suppose that f is a C^1 mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , f'(a) is invertible for some $a \in E$ and b = f(a). Then prove that

(i) there exists open sets *U* and *V* in \mathbb{R}^n such that $a \in U, b \in V, f$ is one to one in *U* and f(U) = V.

(ii) If *g* is the inverse of *f* defined in *V* by $g(f(x)) = x, x \in U$, then $g \in C^1(V)$. [15]

2. (a) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$ and $f(x) = (f_1(x), f_2(x), ..., f_m(x))$, for all $x \in \mathbb{R}^n$ and $f_i : \mathbb{R}^n \to \mathbb{R}$, $1 \le i \le m$. Then prove that $D_j f_i(a)$ exists for all $1 \le i \le m$, $1 \le j \le n$ and $f'(a) = (D_j f_i(a))_{m \times n}$ where $D_j f_i(a)$ denotes partial derivatives of f_i at $a \in \mathbb{R}^n$ w.r.t *jth* variable.

(b) Prove that
$$\lim_{\|H\|\to 0} \frac{|detH|}{\|H\|} = 0$$
, where $H \in M_n(\mathbb{R})$. [10 + 5 = 15]

Group – B

Answer **any one** question from the following questions (10 marks)

1. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Then show that all directional derivatives $D_u f(a)$ exists and $D_u f(a) = Df(a)(u)$ for all $u \in \mathbb{R}^n$. Give an example to show that the converse is not true in general. [10]

2. State and prove Green's Theorem in the plane. Verify Green's theorem in the plane for $\int_{\Gamma} \{(1 + xy^2)dx - x^2ydy\}$, where Γ consists of the arc of the parabola $y = x^2$ from (-1, 1) to (1, 1). [10]