Assignment

Subject-Mathematics
Semester I
Course-Analysis of Several Variables
Paper Code-DEMATH1SCORE3
Total Marks-25

Group - A

Answer any one question from the following questions (15 marks)

1. Suppose that f is a C^{1} mapping of an open set $E \subset \mathbb{R}^{n}$ into $\mathbb{R}^{n}, f^{\prime}(a)$ is invertible for some $a \in E$ and $b=f(a)$. Then prove that
(i) there exists open sets U and V in \mathbb{R}^{n} such that $a \in U, b \in V, f$ is one to one in U and $f(U)=V$.
(ii) If g is the inverse of f defined in V by $g(f(x))=x, x \in U$, then $g \in C^{1}(V)$. [15]
2. (a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at $a \in \mathbb{R}^{n}$ and $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$, for all $x \in \mathbb{R}^{n}$ and $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, 1 \leq i \leq m$. Then prove that $D_{j} f_{i}(a)$ exists for all $1 \leq i \leq m, 1 \leq j \leq n$ and $f^{\prime}(a)=\left(D_{j} f_{i}(a)\right)_{m \times n}$ where $D_{j} f_{i}(a)$ denotes partial derivatives of f_{i} at $a \in \mathbb{R}^{n}$ w.r.t j th variable.
(b) Prove that $\lim _{\|H\| \rightarrow 0} \frac{|d e t H|}{\|H\|}=0$, where $H \in M_{n}(\mathbb{R})$.

$$
[10+5=15]
$$

Group - B

Answer any one question from the following questions (10 marks)

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at $a \in \mathbb{R}^{n}$. Then show that all directional derivatives $D_{u} f(a)$ exists and $D_{u} f(a)=D f(a)(u)$ for all $u \in \mathbb{R}^{n}$. Give an example to show that the converse is not true in general.
2. State and prove Green's Theorem in the plane. Verify Green's theorem in the plane for $\int_{\Gamma}\left\{\left(1+x y^{2}\right) d x-x^{2} y d y\right\}$, where Γ consists of the arc of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$.
