Assignment

Subject-Mathematics Semester I Course-Complex Analysis I Paper Code-DEMATH1CORE2

Total Marks-25

Group – A

Answer **any one** question from the following questions (15 *marks*)

1. (a) Let *f* be analytic in $|z| \le R$. For each 0 < r < R, let $M(r) = \max_{|z|=r} \{|f(z)|\}$ and $A(r) = \max_{|z|=r} \{Ref(z)\}$. Then prove that

$$M(r) \le \frac{R+r}{R-r} |f(0)| + \frac{2r}{R-r} A(R).$$

(b) If f = u + iv is an entire function and $u^2 \le v^2 + 2022$ on \mathbb{C} , then prove that f is a constant. [10+5=15]

2. (a) Let *f* be analytic in a domain *D* and *a* be a point in *D* such that $|f(z)| \le |f(a)|$ holds for all $z \in D$. Then prove that *f* is constant.

(b) Prove that for every $f \in \mathcal{H}(\mathbb{C}\setminus\{0\})$ such that $|f(z)| \le |z|^2 + |z|^{-\frac{1}{2}}$ for all $z \in \mathbb{C}\setminus\{0\}$ is necessarily a polynomial of degree at most two. [10+5=15]

Group – B

Answer **any one** question from the following questions (10 *marks*)

1. Let *f* be analytic in a simply connected domain *D*. Then prove that there exists a function *F* in *D* such that F'(z) = f(z). In particular, $\int_{\gamma} f(z)dz = 0$ for each simple closed contour γ in *D*. [10]

2. Let *f* be a single valued analytic function on the annulus $\mathcal{A} = \{z \in \mathbb{C} : r_2 < |z - \alpha| < r_1\}$ and let *C* denote any positively oriented simple closed contour around α and lying in \mathcal{A} . Then show that *f* has a unique representation of the form $f(z) = \sum_{-\infty}^{\infty} a_n (z - \alpha)^n$, $(r_2 < |z - \alpha| < r_1)$, where [10]

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-\alpha)^{n+1}}, \text{ for } n \in \mathbb{Z}.$$