Assignment

Subject-Mathematics
Semester I
Course-Complex Analysis I
Paper Code-DEMATH1CORE2
Total Marks-25

Group - A

Answer any one question from the following questions (15 marks)

1. (a) Let f be analytic in $|z| \leq R$. For each $0<r<R$, let $M(r)=\max _{|z|=r}\{|f(z)|\}$ and $A(r)=\max _{|z|=r}\{\operatorname{Ref}(z)\}$. Then prove that

$$
M(r) \leq \frac{R+r}{R-r}|f(0)|+\frac{2 r}{R-r} A(R)
$$

(b) If $f=u+i v$ is an entire function and $u^{2} \leq v^{2}+2022$ on \mathbb{C}, then prove that f is a constant.
2. (a) Let f be analytic in a domain D and a be a point in D such that $|f(z)| \leq|f(a)|$ holds for all $z \in D$. Then prove that f is constant.
(b) Prove that for every $f \in \mathcal{H}(\mathbb{C} \backslash\{0\})$ such that $|f(z)| \leq|z|^{2}+|z|^{-\frac{1}{2}}$ for all $z \in \mathbb{C} \backslash\{0\}$ is necessarily a polynomial of degree at most two.

Group - B

Answer any one question from the following questions (10 marks)

1. Let f be analytic in a simply connected domain D. Then prove that there exists a function F in D such that $F^{\prime}(z)=f(z)$. In particular, $\int_{\gamma} f(z) d z=0$ for each simple closed contour γ in D.
2. Let f be a single valued analytic function on the annulus $\mathcal{A}=\left\{z \in \mathbb{C}: r_{2}<\right.$ $\left.|z-\alpha|<r_{1}\right\}$ and let C denote any positively oriented simple closed contour around α and lying in \mathcal{A}. Then show that f has a unique representation of the form $f(z)=\sum_{-\infty}^{\infty} a_{n}(z-\alpha)^{n},\left(r_{2}<|z-\alpha|<r_{1}\right)$, where

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{(z-\alpha)^{n+1}}, \text { for } n \in \mathbb{Z} \tag{10}
\end{equation*}
$$

