Programme Outcomes, Programme Specific Outcomes and Course Outcomes for Ph.D. Programs **Program Name: Ph.D. in Mathematics** Department of Mathematics University of North Bengal West Bengal, INDIA ## **Program Outcomes** - Developing skills to critically examine the background literature relevant to their specific research area. - To prepare students for a career in research and teaching at college and university level. - To prepare students for professions other than teaching, that requires independent mathematical research, advanced mathematical knowledge, critical analysis and thoughtful synthesis. - The opportunity to expand the student's knowledge of their research area, including its theoretical foundations and the specific techniques used to study it. ## **Program Specific Outcomes** - Thorough knowledge of the literature and a comprehensive understanding of scientific methods and techniques applicable to their own research. - Be able to act autonomously in the planning and implementation of research. - Be able to communicate complex ideas effectively both verbally and in writing, which includes the ability to write their Ph.D. thesis, give presentation at various conferences and to submit a research paper or article to a journal for publication. | Paper Code | Unit Title | Marks | Credits | |------------|---|-------|---------| | PCWMATH 1 | Research Methodology Unit -1:
Research Foundation | 50 | 2 | | | Research Methodology Unit -2:
Mathematical Typesetting as a
Computer Applications in Research | 50 | 2 | | PCWMATH 2 | T: Theory of Convergence and
Topological Hyperalgebra | 50 | 2 | | | C: Theory of Entire and Meromorphic Functions | 50 | 2 | | | M: Measure Theory | 50 | 2 | | | A: Algebra | 50 | 2 | | | N: Number Theory | 50 | 2 | ## Ph.D. Course Work (Mathematics) | Paper | | (Mathematics) | |------------------|--|---| | Code | Unit Title | Course Outcomes | | PCWMATH 1 | Research
Methodology
Unit -1:
Research
Foundation | Knowledge gained: Basic introduction of methodology used in research in general and mathematical science in particular. Identification of research problems and sub-problems. Different technique of interpretation. Ethical issues and professional conduct. Literature review Skills gained: Ability to learn criteria of good research. Defining techniques involved in different problems. Understanding characteristics of research documentations (reviews, treatise, monographs, technical report, white paper, thesis, research paper.) Techniques of writing project proposals, paper presentation, and soft skills. | | | | Competency developed: Professional ethics, ethical issues and their significance those arises from computer technology. Concept of ethical issues related to plagiarism and intellectual property rights. Importance of different issues in defining a research problem including literature in research proposal, critique, survey and prereview process. Identifying gaps areas from literature review. | | PCWMATH 1 | Research Methodology Unit -2: Mathematical Typesetting as a Computer Applications inResearch | Knowledge gained: Use of various document classes for example: article.cls, book.cls Use of different packages like amssymb,amsmath,amsfonts,graphics. Paper /article writing by using Latex which are compatible with almost all mathematical journals (MatSciNet, Scopus, Taylor Francis, Springer etc.) Preparing presentation using beamer Skill gained: Ability for framing preamble according to desired looks of presentation. Competency developed: Ability for further use of new softwares towards making good documents. | | PCWMATH 2
(T) | Theory of
Convergence
and
Topological
Hyperalgebra | Knowledge gained: Definition of natural density. Concept of statistical convergence Basic properties of statistical convergence. Concept of <i>I</i> and <i>I*</i>-convergence. Concept of topological groups, semigroups and rings. Definition of topological hyperstructures. Topological polygroups. Skills gained: Comparing the differences between classical convergence and statistical convergence. Comparing the differences between statistical convergence and <i>I</i>-convergence. Analyzing the structure of the set of all <i>I</i>-convergence sequence. Comparing the differences between <i>I</i> and <i>I*</i>-convergence. Comparing the differences between topological groups and topological rings. | | | | Competency developed: Comparing the differences between basis and Schauder basis. Ability of applying the concepts of statistical convergence, <i>I</i> and <i>I*</i>-convergence. Applications of topology towards extension of the study of topological algebraic hyperstructures. Computing the isomorphism theorem. | |------------------|---|---| | PCWMATH 2
(C) | Theory of Entire
and
Meromorphic
Functions | Knowledge gained: Meromorphic functions, Properties of Nevanlinna's characteristic function. Growth of meromorphic functions, Comparative growth of functions. Deficiencies of meromorphic functions. Skills gained: Nevanlinna characteristic function is like maximum modulus function for meromorphic functions. Order of growth of functions. Relation between maximum modulus function and Nevanlinna characteristic function. Explore properties of meromorphic functions with Nevanlinna characteristic function. Factorization of function in terms of zeros and poles. Calculation of counting function and proximity function. | | PCWMATH 2
(M) | Measure Theory | Knowledge gained: Lebesgue outer measure and Lebesgue measure on Euclidean space. Borel measure space of n-dimension and its completion s-dimensional Hausdorff measure on Rⁿ for s ∈ [0,∞) and Hausdorff dimension of a subset of Rⁿ. Skills gained: Ability of constructing Lebesgue outer measure and Lebesgue measure on Euclidean space using covering classes Estimating Lebesgue measure on Rⁿ by closed a compact sets and approximation by open sets. Determination of Hausdorff dimension of a set E ⊂ Rⁿ. Competency developed: Realizing importance of Borel measurability and metric outer measurability in the related theory. Understanding the role of completion to obtain Lebesgue measure space via Borel measure space in Rⁿ. Building a foundation for study Cantor sets, Fractals, etc. | | PCWMATH 2 (A) | Algebra | Knowledge gained: Concept of Normal series, Subnormal series, solvable series. Solvable groups, Nilpotent groups, Torsion group, finitely generated Abelian groups etc. Noetherian Rings, Artinian Rings etc. Galois groups, Cyclotomic field extension, Radical extensions, Algebraic independence etc. Skill gained: Construction of different groups, e.g. solvable groups, nilpotent groups etc. Solving problems using fundamental theorem of Abelian groups. Ability to build different Galois groups and Galois fields. Competency developed: Ability to study these concepts in different algebraic structures, theories. Interest as well as capability to studyCoding Theory, Cryptography | | | | etc. | |------------------|---------------|--| | PCWMATH 2
(N) | Number Theory | Knowledge gained: Dirichlet series, multiplication of Dirichlet series. Riemann zeta function, its functional equation and analytic continuation, its relation with distribution of primes. Analytic proof of prime number theorem Skill gained: Finding zero free regions of Riemann zeta function Ability to understand distribution of primes Ability to deal with different Dirichlet series. Competency developed: Useful tools to deal with various problems in analytic number theory. |