UNIVERSITY OF NORTH BENGAL

M.Phil. Syllabus in ZOOLOGY
(To be implemented from Session 2018-19)

University of North Bengal M. Phil. Syllabus in Zoology CBCS-2018-19

	Semester	-I			
Core Course	Course Name	Marks End Term		Credit	Hrs/Week
Theory		Exam	Total		
MZCT-101	Advanced course in Zoology	100	100	4	4
MZCT-102	Course 1: Review of Literature	50	50	2	4
	Course 2: Research Ethics, Biometry, IPR, Bioinformatics, Computer applications and data processing	50	50	2	4
	Semester-	·II			
MZET 201	Course 1: Students have to opt any one course (Group A, B, C, D, E, F, G, H)	100	100	4	4
	Course 2: Study of Research Articles	50	50	2	
	Course 3: Seminar presentation	50	50	2	4
	Semester-III and S	emester-IV			
MZCC-301	Dissertation	400	400	16	32
Total marks and credit in M. Phil Course			800	32	

• At the end of 3rd Semester a progress report has to be submitted to the Head, Department of Zoology and to be presented in a Seminar Organized by the Department. The submission will be evaluated through question answering during open presentation and promotion to fourth semester may be granted.

M. Phil. in Zoology

MZCT-101: Advanced course in Zoology

FM=100

- 1. Principles and applications of UV-VIS spectrophotometry, IR, NMR, Mass Spectroscopy.
- 2. Principles and applications of Paper, Thin-layer and Column Chromatography.
- 3. Electrophoresis: PAGE, SDS-PAGE, IEF, 2-D, Proteomics, Immunoelectrophoresis and Immunodiffusion
- 4. Microscopy: Principles and applications of light, Phase-contrast, Electron and Fluorescent microscopy.
- 5. Immunological techniques: ELISA, Western Blot, Dot Blot, Immunoflourescence and Immunocytochemistry.
- 6. Nomenclature: Classification of name; Typification and priority concept, Documentation; Conservation strategies of Hotspots, Ramsar sites and Megadiversity countries.
- 7. Basic principles of PCR and other molecular techniques- RAPD, AFLP, RFLP, ISSR, SSR.

MZCT-102: Review of published Research

FM=50

MZCT-103: Research Ethics, Biometry, IPR, Bioinformatics, Computer applications and data processing FM=50

- 1. Plagiarism, sampling and collection, Animal ethical committee and ethics for animal handling, biohazards and biosafety, IPR- Breeder's Right, Ethics and regulation on germplasm exchange mechanism, Ethical issues of GM crops and environmental concerns of transgenic animals.
- Determination of critical difference, correlation coefficient matrix and regression analysis through SPSS software; Awareness about other statistical software; Basic concepts of computer application-Word, office, Excel, Publisher, Linux; Bioinformatics database and softwares.

MZET: 201 (Optional Course)

FM=100

Group A: Cellular and Molecular Immunology

- 1. Antigen: Physical and chemical nature, structure, antigenic determinants.
- 2. Antibody: Three dimensional structure, subclasses, binding forces of antigen and antibody.
- 3. Innate Immunity: Cell associated pattern recognition receptors including TLRs of innate immunity, Recognition of microbes of and damaged self by the innate immune system.

- 4. Organization of MHC in mouse and human, Polymorphism, Antigen presentation and MHC restriction
- 5. Differentiation and maturation of B, Generation of receptor diversity.
- 6. Differentiation and maturation of T cell, positive and negative selection, Generation of receptor diversity.
- 7. Tolerance
- 8. Autoimmunity.
- 9. Tumor immunology.
- 10. Monoclonal antibody, and usage

Group B: Biology of Cancer and Genotoxicity

- Cell biology of Cancer: Classification, characteristics, monoclonal origin, chromosomal changes tumor/cancer evolution of cancer ,cancer stem cells and tumor microenvironment, mechanism of metastasis, angiogenesis , Multicolor FISH and Spectral Karyotyping in Cancer.
- 2. Genetics of Cancer: Cancer as a genetic disease, mutation and regulation of tumour suppressor gene, oncogene, caretaker and gate keeper genes, micro-RNA and cancer, Developmental Pathways in cancer, Cell cycle dysregulation in cancer, Genome instability: Chromosomal instability, Microsatellite instability, telomere and telomerase.
- 3. Epigenetic regulation in cancer.
- 4. Mutagens, Carcinogens, Environmental factors, DNA repair and cancer.
- 5. Therapeutic approches: gene therapy, pro-drug therapy, immunotherapy, personlised medicine.
- 6. Tissue culture and genotoxicity assessment for carcinogenesis.

Group C: Insect Pest and Vector Biology and their Management:

- 1. Insect Classification Major order with characters and examples.
- 2. Concept of pest status and classification of Pesticides.
- 3. Vector biology: Mode of transmission of pathogens by vectors to major crop, man and livestock and their Control strategies.
- 4. Concept of Economic levels:
 - a. Pest surveillance, sampling methods and forecasting
 - b. Economic threshold and injury level
 - c. Determination of EIL and Calculation of economic decision level
- 5. Introduction to major pests and vectors of medical, veterinary and agricultural importance from India.
- 6. Influence of climate and environment change on insect and mite pests.
- 7. Pest Forecasting, Assessing of Crop damage and Protection.
- 8. Methods of insect pest control: Conventional and Non-Conventional.
- 9. Integrated Pest Management (IPM) and Integrated Resistance Management (IRM).

- 10. Host plant resistance to insects and Molecular biology of insect Biotypes.
- 11. Case histories of successfully implemented IPM.
- 12. Quarantine and legislative measures for preventing spread of pests.

Group D: Fish Biology and Aquaculture Techniques

- 1. Growth rate and aging in fishes; Length-weight relationship; Gonadosomatic Index.
- 2. Osmoregulation in fish; Fish migration; Hormonal regulation of gonadal development; Activity of gonadotropin releasing hormone.
- 3. Types of Diseases- viral, bacterial, fungal, protozoan and other parasitic diseases; Mode of disease transmission; Diagnosis and control measures.
- 4. Nutrition, Feed formulation, Feed additives, Alternative feed ingredients; Fish products and by-products.
- 5. Concept of probiotics and prebiotics in aquaculture; Feed microbes and their impact on aquatic environment; Application of hormones in aquaculture.
- 6. Comet Assay; Micronuclei Test; Fish Cell Culture
- 7. Sex differentiation and sex reversal in fishes,; sex control and its role in aquaculture
- 8. Ploidy induction methods- triploidy and tetraploidy; advantages and disadvantages of polyploids; androgenesis and gynogenesis

Group E: Molecular Virology

- 1. General concepts: virus history, diversity, shapes, sizes, and components of genomes; consequences of virus infection to animals and human.
- 2. Isolation and purification of viruses and viral genomes.
- 3. Positive strand RNA viruses, picornaviruses; flaviviruses; togaviridae, coronaviruses;
- 4. Negative strand RNA viruses, paramyxoviruses; orthomyxoviruses: influenza pathogenesis and bird flu; rhabdoviruses: rabies pathogenesis; Filoviridae: Ebola
- 5. Double strand RNA viruses, reoviruses; retroviruses: structure, classification, and life cycle: HIV, viral pathogenesis, and AIDS.
- 6. Small DNA viruses: parvo- and polyomaviruses.
- 7. Large DNA viruses: herpesvirus, adenovirus, and poxviruses.
- 8. Biology, infection/entry and replication strategy of DNA an RNA human viruses.
- 9. Gene expression and Regulation: SV40, HBV, Polyomaviruses, Influenza and HIV.
- 10. Antiviral counter attack strategies.

Group F: Mitochondrial Biology and Diseases

- 1. Mitochondrial structure, Compartmentalization and Transport systems: Gross morphology of mitochondria, Subfractionation of mitochondria, Distribution of mitochondrial enzymes.
- 2. Composition of membranes; current views on structure of inner and outer membranes; mitochondrial transport systems substrate transport and coordination of mitochondrial and cytoplasmic metabolism.

- 3. Oxidative pathways of mitochondria, Electron Transfer Chain and Mitochondrial Genetics: Conversion of pyruvate to Acetyl Co A; beta-oxidation of fatty acids; TCA Cycle; Electron transfer chain carriers of ETC; redox potentials; properties of respitatory complexes; Chemiosmotic model; inhibitors of electron transfer.
- 4. Concept of coupling; Ionophores, beta-oxidation of fatty acids, Mitochondrial genetics- basic concept on mt DNA; genetic criteria for distinguishing Nuclear and mt mutations.
- 5. Mitochondrial Diseases: Mitochondrial disorders of the nervous system: Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, brain ischemia, Prion diseases, Huntington's diseases; Rheumatoid Arthritis; Mitochondrial disorders of the Gastrointestinal tract Inflammation in GIT, Inflammatory Bowel Disease (Chron's Disease, Ulcerative Colitis) etc.
- 6. Techniques for detection of mitochondrial dysfunction: Assessment of impact of oxidative stress on mitochondrial proteins (protein carbonylation, thiol group loss), lipids (Lipid peroxidation MDA and HNE) and DNA (8-hydroxyguanine); Assessment of mitochondrial respiratory enzyme complexes by spectrophotometric methods, Immunohistochemistry of mitochondrial respiratory enzyme complexes, Detection of mitochondrial ATP generation and mitochondria membrane potential; Mitochondrial imaging using common fluorescent probes/dyes (mitochondrial tracker green, red; JC-1 and JC-9; Annexin V; TMRE, Rhodamine B etc.).

Group G: Fish Endocrinology and Chronobiology:

- 1. Functional anatomy of endocrine glands in fish.
- 2. Morphology and histology of testis and ovary.
- 3. Hormonal regulation of spermatogenesis and oogenesis.
- 4. Vitellogenesis: Nature of vitellogenin, mechanism of synthesis and incorporation of vitellogenin in developing oocyte.
- 5. Hormonal control of maturation and ovulation of oocyte.
- 6. Role of GnRH and GtH on gonadal function.
- 7. Fish breeding technique: Breeding with hormone analogs.
- 8. Endogenous sources of melatonin and its role in the regulation of fish reproduction.
- 9. Basic concept and definitions in chronobiology: Mesor, Acrophase, Amplitude, Biorhythm, Circadian, Circaseptan, Circavigintan, Cosinor cycle, Diurnal, Free-running, Infradian, Frequency, Phase, Phase angle, Phase shift, Rhythm, Synchronization, Ultradian, Zeitgeber etc.
- 10. Characteristics and example of: (a) Circadian and (b) Circannual cycles.

Group H: Animal Development and Regeneration

1. Basic concepts of development: Cellular commitment, specification, induction, competence, determination and differentiation; Morphogenetic gradients; Cell fate and cell lineages; Genomic equivalence; Cytoplasmic determinants and imprinting; Model organisms; Cellular basis of differentiation; Trans-differentiation and cell lineages.

- 2. Morphogenesis and organogenesis during animal development: Cell-cell interaction; Differential gene expression; Cell signalling during morphogenesis in early embryo; Fate maps and gastrulation in invertebrate and vertebrate models; Molecular mechanisms of pattern formation in *Drosophila*; Neurulation and fate of neural crest cells; Development of brain and limb in vertebrates; Differentiation of neurons.
- 3. Metamorphosis and Regeneration in animals: Metamorphosis; Distribution of regenerative capacity in animal groups; Modes of regeneration; Cellular and molecular basis of epimorphosis, morphallaxis and compensatory regeneration; Gene regulation during regeneration and their implication in future regenerative therapies with special emphasis to central nervous system and cardio-vascular system.
- 4. Implications of developmental biology in regenerative medicine: Stem cells and their role in development; Stem cell self-renewal and pluripotency; Cell cycle regulation in stem cells; Stem cell niches; Analysis of mutants and transgenics in development; Gene therapy and therapeutic application of stem cells; Genetic Manipulation of stem cells.